Explore les actions de groupe sur des ensembles à travers des homomorphismes et des produits cartésiens, illustrant leurs propriétés et définitions équivalentes.
Explore l'intégration curviligne dans le plan complexe, y compris les courbes régulières, les propriétés, les exemples, les antidérivés, le théorème de Cauchy et les critères d'intégrabilité.
Discute de la fonction gamma, de ses propriétés et de l'approximation de Stirling pour les grandes factorielles, en soulignant leur importance dans les méthodes mathématiques pour la physique.