En géométrie plane euclidienne, une tangente au cercle est une droite qui touche un cercle en un point unique, sans passer par l'intérieur du cercle. Les droites tangents aux cercles sont le sujet de nombreux théorèmes, et apparaissent dans de nombreuses constructions à la règle et au compas et des preuves. Une propriété souvent utilisée dans ces théorèmes est que la tangente en un point du cercle est orthogonale au rayon du cercle passant par le point de contact.
Une droite tangente (t) à un cercle C intersecte le cercle en un point unique T, contrairement aux sécantes qui passent nécessairement par deux points du cercle. Cette propriété de tangence est conservée par de nombreuses transformations géométriques, comme les homothéties, les rotations, les translations, les inversions, et les projections. On dit que ces transformations conservent la structure d'incidence de la droite et du cercle, même si les images peuvent être déformées.
Le rayon d'un cercle est perpendiculaire à la tangente à son extrémité au bord du cercle. Réciproquement, la perpendiculaire au rayon passant par son extrémité est la tangente au cercle. La figure géométrique résultante du cercle et sa tangente montre une symétrie axiale le long du rayon.
Aucune tangente ne passe par un point intérieur au cercle, car elle serait dès lors une sécante. Cependant, par un point extérieur P au cercle, il passe deux tangentes au cercle. La figure géométrique qui résulte de cette construction a une symétrie axiale le long de la droite passant par P et le centre du cercle. Ainsi, les longueurs des segments entre P et les points de tangence sont égaux. Par le théorème sécante-tangente, le carré de cette longueur de tangente est égale à la puissance du point par rapport au cercle. Cette puissance est égale au produit des distances de P à chacun des deux points d'intersection du cercle avec une sécante passant par P.
La droite tangente et le point de tangence ont une relation de conjugaison de l'un à l'autre, qui a été généralisé dans l'idée des pôles et polaires.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, et plus précisément en géométrie, le problème des contacts, appelé également problème d'Apollonius ou problème des trois cercles, est un des grands problèmes de l'Antiquité grecque. Il s'agit de trouver un cercle tangent à trois cercles donnés de rayons différents. Ce problème a été présenté par Pappus comme étant le dixième et le plus difficile du Traité des contacts, un des ouvrages perdus d'Apollonius. En effet, il faudra attendre 1600 pour sa résolution par François Viète qui montrera qu'il admet au maximum huit solutions.
vignette|300x300px| Un quadrilatère circonscriptible avec son cercle inscrit En géométrie euclidienne, un quadrilatère circonscriptible (ou quadrilatère tangentiel) est un quadrilatère convexe pour lequel il existe un cercle inscrit, c'est-à-dire un cercle situé à l'intérieur du quadrilatère et tangent à chacun de ses quatre côtés. On dit alors que le quadrilatère circonscrit son cercle inscrit. Un quadrilatère circonscriptible est un cas particulier de polygone circonscriptible.
Le théorème de géométrie qui affirme que l'angle inscrit dans un demi-cercle est droit, est appelé Théorème de Thalès en Allemagne (Satz des Thales) à partir de la toute fin du , puis dans plusieurs pays, mais assez rarement en France où, à partir à peu près de la même époque, le « théorème de Thalès » désigne un théorème tout autre, sur la proportionnalité des segments découpés sur deux droites sécantes par des droites parallèles.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
Couvre le processus de normalisation des courbes algébriques planes, en se concentrant sur les polynômes irréductibles et les courbes affines.
Explore le concept d'inclusion bissectrice dans la stéréotomie et la configuration des panneaux convexes et concaves.
Explore les nombres dintersection pour compter les solutions aux équations polynomiales algébriquement et leur signification géométrique dans la théorie des intersections et la géométrie énumérative.
Geo-energy is a comprehensive term used to describe any form of energy that comes from the Earth. This includes hydrocarbons such as gas, oil, and coal, but also geothermal energy (shallow and deep). The focus of this thesis is on Enhanced Geothermal Syste ...
2020
Let F be a family of n pairwise intersecting circles in the plane. We show that the number of lenses, that is convex digons, in the arrangement induced by F is at most 2n - 2. This bound is tight. Furthermore, if no two circles in F touch, then the geometr ...
Electronic Journal Of Combinatorics2024
, ,
We show that for m points and n lines in R-2, the number of distinct distances between the points and the lines is Omega(m(1/5)n(3/5)), as long as m(1/2)