Explore les transformations canoniques, leurs propriétés et leurs applications dans la mécanique hamiltonienne, en mettant l'accent sur leur rôle dans la simplification de l'analyse des systèmes complexes.
Couvre la théorie Smith dans la persistance et la dynamique des flots, explorant les invariants de la mécanique classique, le théorème Poincaré-Birkhoff et la conjecture Hofer-Zehnder.
Explore les formulations hamiltoniennes et lagrangiennes, les variables canoniques, les opérateurs de Lie et leurs applications dans la dynamique des faisceaux et les systèmes non linéaires.
Explore le formalisme hamiltonien pour l'oscillateur harmonique, en se concentrant sur la dérivation lagrangienne et hamiltonienne, en isolant le système et en générant de nouvelles quantités conservées.