L' équation de Boltzmann ou équation de transport de Boltzmann décrit le comportement statistique d'un système thermodynamique hors état d'équilibre, conçue par Ludwig Boltzmann en 1872. L'exemple classique d'un tel système est un fluide avec des gradients de température dans l'espace provoquant un flux de chaleur des régions les plus chaudes vers les plus froides, par le transport aléatoire mais orienté des particules composant ce fluide.
vignette|250px|La diffusion moléculaire d'un point de vue microscopique et macroscopique. Les molécules solubles sur le côté gauche de la barrière (ligne violette) diffusent pour remplir le volume complet. En haut : une seule molécule se déplace aléatoirement. Au milieu : Le soluté remplit le volume disponible par marche aléatoire. En bas : au niveau macroscopique, le côté aléatoire devient indétectable. Le soluté se déplace des zones où les concentrations sont élevées vers les zones à concentrations plus faibles.
Léquation de Langevin' (1908) est une équation stochastique pour le mouvement brownien. Dans l'approche théorique de Langevin, une grosse particule brownienne de masse m, supposée animée à l'instant t d'une vitesse , est soumise à deux forces bien distinctes : une force de frottement fluide du type , où k est une constante positive. Dans le cas d'une particule sphérique de rayon a, cette constante s'écrit explicitement : (loi de Stokes). une force complémentaire, notée , qui synthétise la résultante des chocs aléatoires des molécules de fluide environnantes.
The convection–diffusion equation is a combination of the diffusion and convection (advection) equations, and describes physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. Depending on context, the same equation can be called the advection–diffusion equation, drift–diffusion equation, or (generic) scalar transport equation.
En mathématiques, en économie et en physique théorique, une marche aléatoire est un modèle mathématique d'un système possédant une dynamique discrète composée d'une succession de pas aléatoires, ou effectués « au hasard ». On emploie également fréquemment les expressions marche au hasard, promenade aléatoire ou random walk en anglais. Ces pas aléatoires sont de plus totalement décorrélés les uns des autres ; cette dernière propriété, fondamentale, est appelée caractère markovien du processus, du nom du mathématicien Markov.
Un phénomène de transfert (ou phénomène de transport) est un phénomène irréversible durant lequel une grandeur physique est transportée par le biais de molécules. C'est un phénomène transversal présent dans tous les domaines de la science et en ingénierie. Tous les phénomènes de transport ont pour origine l'inhomogénéité d'une grandeur intensive. C'est la tendance spontanée des systèmes physiques et chimiques à rendre uniformes ces grandeurs qui provoquent le transport.
La loi de Stokes-Einstein ou loi de Stokes-Einstein-Sutherland donne le coefficient de diffusion d'un soluté dans un solvant. Elle est basée sur les lois du mouvement brownien et de la loi de Stokes donnant la force exercée par un liquide sur une particule solide. Cette loi est ainsi nommée pour les travaux d'Albert Einstein (1905) et de William Sutherland (1904).
En mathématiques, le noyau de la chaleur est une fonction de Green (également appelée solution élémentaire) de l'équation de la chaleur sur un domaine spécifié, avec éventuellement des conditions aux limites appropriées. C'est aussi un des outils principaux de l'étude du spectre du laplacien. Le noyau de la chaleur représente l'évolution de la température égale à une unité de chaleur en un point au temps initial.
En thermodynamique hors équilibre, les relations de réciprocité d'Onsager ou relations de réciprocité d'Onsager-Casimir caractérisent les coefficients phénoménologiques qui apparaissent dans les relations qui relient les flux de variables extensives caractérisant le système considéré aux affinités thermodynamiques correspondantes. Elles ont été établies par Lars Onsager en 1931 et précisées par Hendrik Casimir en 1945. Comme d'autres relations de ce type, par exemple le principe de Curie, elles sont l'expression des propriétés d'invariance ou de symétrie de ces systèmes.
En théorie de la réponse linéaire, il existe une relation entre la fonction de réponse et la fonction de corrélation . Celle-ci a été établie par Herbert Callen et Theodore Welton en 1951, et pour cette raison le théorème de fluctuation-dissipation est aussi appelé théorème de Callen-Welton. Selon ce théorème, Le nom de théorème de fluctuation-dissipation vient de ce que la partie imaginaire de la fonction de réponse mesure la dissipation, alors que la fonction de corrélation mesure l'intensité des fluctuations.