En arithmétique, une fonction multiplicative est une fonction arithmétique f : N* → C vérifiant les deux conditions suivantes :
f(1) = 1 ;
pour tous entiers a et b > 0 premiers entre eux, on a : f (ab) = f(a)f(b).
Une fonction complètement multiplicative est une fonction arithmétique g vérifiant :
g(1) = 1 ;
pour tous entiers a et b > 0, on a : g(ab) = g(a)g(b).
Ces dénominations peuvent varier d'un ouvrage à un autre : fonction faiblement multiplicative pour fonction multiplicative, fonction multiplicative ou totalement multiplicative pour fonction complètement multiplicative.
Les fonctions multiplicatives interviennent notamment en théorie analytique des nombres, dans les séries de Dirichlet.
Une fonction multiplicative ƒ est entièrement déterminée par ses valeurs en les puissances non nulles des entiers premiers. En effet, d'après le théorème fondamental de l'arithmétique, tout entier n > 0 admet une décomposition en produit de facteurs premiers, unique à l'ordre près des facteurs :
où les p sont des nombres premiers et les k des entiers naturels, avec (pour assurer l'unicité) : la suite finie des p est strictement croissante et chaque k (appelé la valuation p-adique de n) est non nul.
En appliquant ƒ, il vient :
Il n'existe aucune contrainte supplémentaire : toute suite de nombres complexes indexée par les puissances non nulles des entiers premiers donne, via la formule ci-dessus, une unique fonction multiplicative.
Pour des raisons analogues, une fonction complètement multiplicative g est entièrement déterminée par ses valeurs en les nombres premiers. En reprenant les notations ci-dessus :
Ces considérations prouvent qu'il existe une infinité de fonctions complètement multiplicatives.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette|upright=1.5|Les mille premières valeurs de φ(n). En mathématiques, l'indicatrice d'Euler est une fonction arithmétique de la théorie des nombres, qui à tout entier naturel n non nul associe le nombre d'entiers compris entre 1 et n (inclus) et premiers avec n. Elle intervient en mathématiques pures, à la fois en théorie des groupes, en théorie algébrique des nombres et en théorie analytique des nombres. En mathématiques appliquées, à travers l'arithmétique modulaire, elle joue un rôle important en théorie de l'information et plus particulièrement en cryptologie.
En mathématiques, la fonction de Möbius désigne généralement une fonction multiplicative particulière, définie sur les entiers strictement positifs et à valeurs dans l'ensemble {–1, 0, 1}. Elle intervient dans la formule d'inversion de Möbius. Elle est utilisée dans des branches différentes des mathématiques. Vue sous un angle élémentaire, la fonction de Möbius permet certains calculs de dénombrement, en particulier pour l'étude des p-groupes ou en théorie des graphes.
En théorie des nombres, une fonction arithmétique f est une application définie sur l'ensemble des entiers strictement positifs et à valeurs dans l'ensemble des nombres complexes. En d'autres termes, une fonction arithmétique n'est rien d'autre qu'une suite de nombres complexes, indexée par N*. Les fonctions arithmétiques les plus étudiées sont les fonctions additives et les fonctions multiplicatives. Une opération importante sur les fonctions arithmétiques est le produit de convolution de Dirichlet.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
This course covers methods for the analysis and control of systems with multiple inputs and outputs, which are ubiquitous in modern technology and industry. Special emphasis will be given to discrete-
We study three convolutions of polynomials in the context of free probability theory. We prove that these convolutions can be written as the expected characteristic polynomials of sums and products of unitarily invariant random matrices. The symmetric addi ...
SPRINGER HEIDELBERG2022
, ,
In this paper we consider two aspects of the inverse problem of how to construct merge trees realizing a given barcode. Much of our investigation exploits a recently discovered connection between the symmetric group and barcodes in general position, based ...
2024
We prove that for any triangle-free intersection graph of n axis-parallel line segments in the plane, the independence number alpha of this graph is at least alpha n/4+ohm(root n). We complement this with a construction of a graph in this class satisfying ...