En mathématiques, la fonction de Möbius désigne généralement une fonction multiplicative particulière, définie sur les entiers strictement positifs et à valeurs dans l'ensemble {–1, 0, 1}. Elle intervient dans la formule d'inversion de Möbius.
Elle est utilisée dans des branches différentes des mathématiques. Vue sous un angle élémentaire, la fonction de Möbius permet certains calculs de dénombrement, en particulier pour l'étude des p-groupes ou en théorie des graphes. En arithmétique, elle est parfois définie comme l'inverse de la fonction multiplicative constante 1, pour l'opération convolution de Dirichlet. On la trouve encore pour l'étude des polynômes cyclotomiques sur le corps des nombres rationnels. Son rôle est analogue pour les corps finis et, par voie de conséquence, la fonction de Möbius intervient dans la théorie des codes correcteurs. En théorie analytique des nombres, la fonction de Möbius est plus souvent introduite à l'aide des séries de Dirichlet. Elle intervient dans certaines démonstrations liées à l'étude de l'hypothèse de Riemann sur les nombres premiers.
L'usage de cette fonction est ancien : on le trouve chez Euler en 1748 ou encore chez Gauss dans ses Disquisitiones arithmeticae en 1801. C'est néanmoins Möbius qui le premier l'étudie systématiquement, en 1832.
Dans toute la suite de l'article, N désigne l'ensemble des entiers naturels et N* celui des entiers strictement positifs. La définition la plus courante est la suivante :
Le tableau de ses vingt premières valeurs est donc :
et le graphe de ses cinquante premières valeurs est :
Avec cette seconde définition, μ est automatiquement, comme 1, multiplicative, c'est-à-dire que :
Montrons que la fonction μ de la première définition vérifie bien
Si n = 1, le résultat est évident. Si n > 1, soient P l'ensemble des facteurs premiers de n et s = card(P) (≥ 1). Les seuls diviseurs de n dont l'image par μ est non nulle sont ceux sans facteur carré, c'est-à-dire les produits d'éléments distincts de P donc, en utilisant que le nombre de parties de P de cardinal t est égal au coefficient binomial puis en appliquant la formule du binôme :ce qui termine la démonstration.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Présentation des méthodes de la mécanique analytique (équations de Lagrange et de Hamilton) et introduction aux notions de modes normaux et de stabilité.
La formule d'inversion de Möbius classique a été introduite dans la théorie des nombres au cours du par August Ferdinand Möbius. Elle a été généralisée plus tard à d'autres « formules d'inversion de Möbius ». La version classique déclare que pour toutes fonctions arithmétiques f et g, on a si et seulement si f est la transformée de Möbius de g, où μ est la fonction de Möbius et les sommes portent sur tous les diviseurs strictement positifs d de n.
En mathématiques, l'hypothèse de Riemann est une conjecture formulée en 1859 par le mathématicien allemand Bernhard Riemann, selon laquelle les zéros non triviaux de la fonction zêta de Riemann ont tous une partie réelle égale à 1/2. Sa démonstration améliorerait la connaissance de la répartition des nombres premiers et ouvrirait des nouveaux domaines aux mathématiques. Cette conjecture constitue l'un des problèmes non résolus les plus importants des mathématiques du début du : elle est l'un des vingt-trois fameux problèmes de Hilbert proposés en 1900, l'un des sept problèmes du prix du millénaire et l'un des dix-huit problèmes de Smale.
En arithmétique, une fonction multiplicative est une fonction arithmétique f : N* → C vérifiant les deux conditions suivantes : f(1) = 1 ; pour tous entiers a et b > 0 premiers entre eux, on a : f (ab) = f(a)f(b). Une fonction complètement multiplicative est une fonction arithmétique g vérifiant : g(1) = 1 ; pour tous entiers a et b > 0, on a : g(ab) = g(a)g(b). Ces dénominations peuvent varier d'un ouvrage à un autre : fonction faiblement multiplicative pour fonction multiplicative, fonction multiplicative ou totalement multiplicative pour fonction complètement multiplicative.
Explore complètement les fonctions multiplicatives, l'inversion, les fonctions Mobius et l'estimation asymptotique en mathématiques.
Introduit les fondamentaux de la mécanique quantique, couvrant les fonctions d'onde et les niveaux d'énergie.
Explore les théorèmes de Mertens sur les estimations des nombres premiers et le comportement de la fonction de Mobius par rapport au théorème des nombres premiers.
We study three convolutions of polynomials in the context of free probability theory. We prove that these convolutions can be written as the expected characteristic polynomials of sums and products of unitarily invariant random matrices. The symmetric addi ...
Given a level set E of an arbitrary multiplicative function f, we establish, by building on the fundamental work of Frantzikinakis and Host [14, 15], a structure theorem that gives a decomposition of 1E into an almost periodic and a pseudo-random part ...
2020
We study properties of arithmetic sets coming from multiplicative number theory and obtain applications in the theory of uniform distribution and ergodic theory. Our main theorem is a generalization of Kátai's orthogonality cri ...