Explore la stabilité transitoire dans la dynamique des systèmes de puissance, couvrant les équations algébriques, les modèles de générateurs et les techniques d'intégration numérique.
Explore les simulations de dynamique moléculaire sous des contraintes holonomiques, en se concentrant sur l'intégration numérique et la formulation d'algorithmes.
Couvre les bases des simulations de dynamique moléculaire, des propriétés d'ensemble, des formulations de mécanique classique, de l'intégration numérique, de la conservation de l'énergie et des algorithmes de contrainte.
Explore les applications pratiques en dynamique non linéaire, en mettant l'accent sur les méthodes d'intégration symplectique et les approximations de lentilles minces pour des calculs précis en physique des accélérateurs.