In trigonometry and geometry, triangulation is the process of determining the location of a point by forming triangles to the point from known points. Triangulation (surveying) Specifically in surveying, triangulation involves only angle measurements at known points, rather than measuring distances to the point directly as in trilateration; the use of both angles and distance measurements is referred to as triangulateration. Triangulation (computer vision) Computer stereo vision and optical 3D measuring systems use this principle to determine the spatial dimensions and the geometry of an item. Basically, the configuration consists of two sensors observing the item. One of the sensors is typically a digital camera device, and the other one can also be a camera or a light projector. The projection centers of the sensors and the considered point on the object's surface define a (spatial) triangle. Within this triangle, the distance between the sensors is the base b and must be known. By determining the angles between the projection rays of the sensors and the basis, the intersection point, and thus the 3D coordinate, is calculated from the triangular relations. Triangulation today is used for many purposes, including surveying, navigation, metrology, astrometry, binocular vision, model rocketry and, in the military, the gun direction, the trajectory and distribution of fire power of weapons. The use of triangles to estimate distances dates to antiquity. In the 6th century BC, about 250 years prior to the establishment of the Ptolemaic dynasty, the Greek philosopher Thales is recorded as using similar triangles to estimate the height of the pyramids of ancient Egypt. He measured the length of the pyramids' shadows and that of his own at the same moment, and compared the ratios to his height (intercept theorem). Thales also estimated the distances to ships at sea as seen from a clifftop by measuring the horizontal distance traversed by the line-of-sight for a known fall, and scaling up to the height of the whole cliff.
Theo Lasser, Rainer Leitgeb, Martin Villiger, Adrian Bachmann, Roland Michaely, Cédric Blatter