Informatique quantiqueL'informatique quantique est le sous-domaine de l'informatique qui traite des calculateurs quantiques et des associés. La notion s'oppose à celle d'informatique dite « classique » n'utilisant que des phénomènes de physique classique, notamment de l'électricité (exemple du transistor) ou de mécanique classique (exemple historique de la machine analytique). En effet, l'informatique quantique utilise également des phénomènes de la mécanique quantique, à savoir l'intrication quantique et la superposition.
Matrices de PauliLes matrices de Pauli, développées par Wolfgang Pauli, forment, au facteur i près, une base de l'algèbre de Lie du groupe SU(2). Elles sont définies comme l'ensemble de matrices complexes de dimensions suivantes : (où i est l’unité imaginaire des nombres complexes). Ces matrices sont utilisées en mécanique quantique pour représenter le spin des particules, notamment dès 1927 dans l'étude non-relativiste du spin de l'électron : l'équation de Pauli.
Représentation de HeisenbergEn mécanique quantique, la représentation de Heisenberg est une des trois formulations et modes de traitement des problèmes dépendant du temps dans le cadre de la mécanique quantique classique. Dans cette représentation, les opérateurs du système évoluent avec le temps alors que le vecteur d'état quantique ne dépend pas du temps. Remarque : La représentation de Heisenberg ne doit pas être confondue avec la « mécanique des matrices », quelquefois appelée « mécanique quantique de Heisenberg ».
Principe de complémentaritéEn physique, le principe de complémentarité formulé par Niels Bohr en 1927 est un énoncé relevant de l'interprétation de la mécanique quantique qui vise à expliquer la dualité onde-corpuscule et le principe d'indétermination de Werner Heisenberg. Il consiste à dire que les comportements corpusculaires et ondulatoires qui cohabitent dans les phénomènes quantiques, ainsi que les paires de propriétés incompatibles de par le principe d'indétermination sont en fait des aspects complémentaires d'une même réalité.
Relation de commutation canoniqueEn mécanique quantique, la relation de commutation canonique est la relation fondamentale entre les grandeurs conjuguées canoniques (grandeurs qui sont liées par définition telles que l'une est la transformée de Fourier d'une autre). Par exemple : entre l'opérateur de position x et l'opérateur d'impulsion px dans la direction x d'une particule ponctuelle dans une dimension, où est le commutateur de x et px , i est l'unité imaginaire, et est la constante de Planck réduite .
Représentation d'interactionLa représentation d'interaction ou représentation de Dirac de la mécanique quantique est une manière de traiter les problèmes dépendant du temps. Dans la représentation d'interaction, on applique les hypothèses suivantes : On considère un hamiltonien ayant la forme suivante : où est constant dans le temps et décrit une interaction perturbative qui peut dépendre du temps. Les états propres sont dépendants du temps Les opérateurs sont aussi dépendants du temps La dynamique des états est décrite suivant la représentation de Schrödinger tandis que la dynamique des opérateurs est décrite suivant la représentation de Heisenberg.
AnyonEn physique quantique, un anyon est un type de particule propre aux systèmes à deux dimensions. Ni boson ni fermion, l'anyon en est une généralisation. Prédits et théorisés depuis plus de quatre décennies, les premières preuves expérimentales de l'existence des anyons ne datent que de 2020. Le concept d'anyon est utile lorsqu’on s’intéresse à un système à deux dimensions tel que le graphène ou l’.
Représentation de SchrödingerEn mécanique quantique, la représentation de Schrödinger est une des trois formulations et modes de traitement des problèmes dépendant du temps dans le cadre de la mécanique quantique classique. Dans cette représentation, l'état d'un système évolue avec le temps. Le principe de superposition quantique stipule qu'une fonction d'état est en général une combinaison linéaire d'états propres.
Mesure spectraleEn mathématiques, plus précisément en analyse fonctionnelle, une mesure spectrale est une application définie sur une tribu à valeurs dans l'espace des projections orthogonales d'un espace hilbertien et vérifiant des axiomes semblables à ceux qui définissent les mesures positives. Les mesures spectrales sont utilisées pour exprimer des résultats en théorie spectrale, tels que le théorème spectral pour les opérateurs auto-adjoints. Les mesures spectrales ont des propriétés similaires aux mesures réelles positives.
Quantum operationIn quantum mechanics, a quantum operation (also known as quantum dynamical map or quantum process) is a mathematical formalism used to describe a broad class of transformations that a quantum mechanical system can undergo. This was first discussed as a general stochastic transformation for a density matrix by George Sudarshan. The quantum operation formalism describes not only unitary time evolution or symmetry transformations of isolated systems, but also the effects of measurement and transient interactions with an environment.