Paul DiracPaul Adrien Maurice Dirac ( à Bristol, Angleterre - à Tallahassee, Floride, États-Unis) est un mathématicien et physicien britannique. Il est l'un des « pères » de la mécanique quantique et a prévu l'existence de l'antimatière. Il est colauréat avec Erwin Schrödinger du prix Nobel de physique de 1933 . Son père, Charles Adrien Ladislas Dirac, est originaire de Saint-Maurice, dans le canton du Valais (Suisse).
Informatique quantiqueL'informatique quantique est le sous-domaine de l'informatique qui traite des calculateurs quantiques et des associés. La notion s'oppose à celle d'informatique dite « classique » n'utilisant que des phénomènes de physique classique, notamment de l'électricité (exemple du transistor) ou de mécanique classique (exemple historique de la machine analytique). En effet, l'informatique quantique utilise également des phénomènes de la mécanique quantique, à savoir l'intrication quantique et la superposition.
Intégrale de cheminUne 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.
Physique mathématiqueLa physique mathématique est un domaine de recherche commun à la physique et aux mathématiques s'intéressant au développement des méthodes mathématiques spécifiques aux problèmes physiques ou plus généralement à l'application des mathématiques à la physique, et, à l'opposé, aux développements mathématiques que suscitent certains domaines de recherche en physique. Elle inclut notamment l'étude des systèmes dynamiques, des algèbres aux symétries particulières, des méthodes de décomposition en séries et des méthodes de résolution d'équations différentielles.
Matrices de PauliLes matrices de Pauli, développées par Wolfgang Pauli, forment, au facteur i près, une base de l'algèbre de Lie du groupe SU(2). Elles sont définies comme l'ensemble de matrices complexes de dimensions suivantes : (où i est l’unité imaginaire des nombres complexes). Ces matrices sont utilisées en mécanique quantique pour représenter le spin des particules, notamment dès 1927 dans l'étude non-relativiste du spin de l'électron : l'équation de Pauli.
Représentation de HeisenbergEn mécanique quantique, la représentation de Heisenberg est une des trois formulations et modes de traitement des problèmes dépendant du temps dans le cadre de la mécanique quantique classique. Dans cette représentation, les opérateurs du système évoluent avec le temps alors que le vecteur d'état quantique ne dépend pas du temps. Remarque : La représentation de Heisenberg ne doit pas être confondue avec la « mécanique des matrices », quelquefois appelée « mécanique quantique de Heisenberg ».
Mécanique quantique dans l'espace des phasesLa formulation de la mécanique quantique dans l'espace des phases place les variables de position et d'impulsion sur un pied d'égalité dans l'espace des phases. En revanche, la représentation de Schrödinger utilise soit la représentation dans l'espace des positions, soit la représentation dans celui des impulsions (voir la page espace des positions et des impulsions).
Principe de complémentaritéEn physique, le principe de complémentarité formulé par Niels Bohr en 1927 est un énoncé relevant de l'interprétation de la mécanique quantique qui vise à expliquer la dualité onde-corpuscule et le principe d'indétermination de Werner Heisenberg. Il consiste à dire que les comportements corpusculaires et ondulatoires qui cohabitent dans les phénomènes quantiques, ainsi que les paires de propriétés incompatibles de par le principe d'indétermination sont en fait des aspects complémentaires d'une même réalité.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Relation de commutation canoniqueEn mécanique quantique, la relation de commutation canonique est la relation fondamentale entre les grandeurs conjuguées canoniques (grandeurs qui sont liées par définition telles que l'une est la transformée de Fourier d'une autre). Par exemple : entre l'opérateur de position x et l'opérateur d'impulsion px dans la direction x d'une particule ponctuelle dans une dimension, où est le commutateur de x et px , i est l'unité imaginaire, et est la constante de Planck réduite .