Publications associées (55)

Accelerator-driven Data Arrangement to Minimize Transformers Run-time on Multi-core Architectures

David Atienza Alonso, Giovanni Ansaloni, Alireza Amirshahi

The increasing complexity of transformer models in artificial intelligence expands their computational costs, memory usage, and energy consumption. Hardware acceleration tackles the ensuing challenges by designing processors and accelerators tailored for t ...
2024

Computational Imaging SPAD Cameras

Andrei Ardelean

Vision systems built around conventional image sensors have to read, encode and transmit large quantities of pixel information, a majority of which is redundant. As a result, new computational imaging sensor architectures were developed to preprocess the r ...
EPFL2023

Fabrication and Characterization of High Aspect Ratio Amorphous Silicon Based Microchannel Plates

Christophe Ballif, Janina Christine Isabelle Löffler, Samira Alexandra Frey, Mohammad Beygi

This contribution focuses on the fabrication and characterization of microchannel plates made of hydrogenated amorphous silicon (AMCPs). Flexible fabrication processes and the semi-conducting nature of amorphous silicon could give these detectors the advan ...
2021

Collaborative Learning in the Jungle (Decentralized, Byzantine, Heterogeneous, Asynchronous and Nonconvex Learning)

Rachid Guerraoui, Sadegh Farhadkhani, El Mahdi El Mhamdi, Le Nguyen Hoang, Sébastien Louis Alexandre Rouault, Arsany Hany Abdelmessih Guirguis

We study Byzantine collaborative learning, where n nodes seek to collectively learn from each others' local data. The data distribution may vary from one node to another. No node is trusted, and f < n nodes can behave arbitrarily. We prove that collaborati ...
2021

A Structure Theorem for Level Sets of Multiplicative Functions and Applications

Florian Karl Richter

Given a level set E of an arbitrary multiplicative function f, we establish, by building on the fundamental work of Frantzikinakis and Host [14, 15], a structure theorem that gives a decomposition of 1E1_{E} into an almost periodic and a pseudo-random part ...
2020

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.