Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.
Explore la stabilité dans les ODE, y compris les contrôles d'erreur, les points d'équilibre et les attracteurs globaux, en mettant l'accent sur les schémas numériques tels que la méthode d'Euler.
Explore la stabilité zéro et la stabilité absolue dans les méthodes numériques, y compris Forward Euler, Backward Euler, Crank-Nicolson, et les méthodes Heun.