La formule d'inversion de Möbius classique a été introduite dans la théorie des nombres au cours du par August Ferdinand Möbius. Elle a été généralisée plus tard à d'autres « formules d'inversion de Möbius ». La version classique déclare que pour toutes fonctions arithmétiques f et g, on a si et seulement si f est la transformée de Möbius de g, où μ est la fonction de Möbius et les sommes portent sur tous les diviseurs strictement positifs d de n. L'équivalence reste vraie si les fonctions f et g (définies sur l'ensemble N* des entiers strictement positifs) sont à valeurs dans un groupe abélien (vu comme Z-module). On se place dans l'anneau commutatif F des fonctions arithmétiques, défini comme suit. L'ensemble F des fonctions arithmétiques est naturellement muni d'une addition qui en fait un groupe abélien. On le munit d'une deuxième loi interne, la convolution de Dirichlet, en associant à deux éléments f et g de F la fonction f ✻ g définie par : Cette loi sur F est associative, commutative et distributive par rapport à l'addition, et il existe un élément neutre : la fonction notée ici δ et définie par δ(1) = 1 et pour tout entier n > 1, δ(n) = 0. Le groupe des inversibles (F, ✻) de cet anneau est le groupe abélien constitué des fonctions f telles que f(1) ≠ 0 (les fonctions multiplicatives en forment un sous-groupe). En notant 1 la fonction constante 1(n) = 1, la formule d'inversion se réécrit : Cette équivalence résulte de la définition de μ comme l'inverse de 1 pour la convolution ✻ : qui donne bien : et Ces calculs restent valables pour f et g à valeurs dans un groupe abélien (G, +) car le sous-anneau de F constitué des applications à valeurs entières contient μ et 1, et les applications de N* dans G forment un module à droite sur cet anneau, la loi externe étant la convolution définie par les mêmes formules. Une approche combinatoire permet de généraliser l'étude ci-dessus. Soit A un ensemble partiellement ordonné dont la relation d'ordre est notée ≤.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MATH-313: Number theory I.b - Analytic number theory
The aim of this course is to present the basic techniques of analytic number theory.
Séances de cours associées (17)
Théorèmes de Mertens et fonction de Mobius
Explore les théorèmes de Mertens sur les estimations des nombres premiers et le comportement de la fonction de Mobius par rapport au théorème des nombres premiers.
Fonctions arithmétiques : fonctions multiplicatives et convolution de Dirichlet
Couvre les fonctions multiplicatives, la convolution de Dirichlet et la fonction de Mobius dans les fonctions arithmétiques.
Transformée de Fourier : Formule d'inversion
Explore la formule d'inversion de la transformée de Fourier et ses applications dans le traitement du signal.
Afficher plus
Publications associées (5)

Equivariant measurable liftings

Nicolas Monod

We discuss equivariance for linear liftings of measurable functions. Existence is established when a transformation group acts amenably, as e.g. the Mobius group of the projective line. Since the general proof is very simple but not explicit, we also provi ...
Polish Acad Sciences Inst Mathematics-Impan2015

Algebraic Divisibility Sequences Over Function Fields

Valéry Aurélien Mahé

In this note we study the existence of primes and of primitive divisors in function field analogues of classical divisibility sequences. Under various hypotheses, we prove that Lucas sequences and elliptic divisibility sequences over function fields define ...
Australian Mathematical Society2012

A Dirichlet Analogue Of The Free Monogenic Inverse Semigroup Via Mobius Inversion

George Stoianov

The Mobius inversion formula of the free monogenic inverse semigroup is represented by the Mobius function for Cauchy product. In this short note we describe a Dirichlet analogue of this inverse semigroup. ...
Rocky Mountain Mathematics Consortium2011
Afficher plus
Concepts associés (18)
Fonction de Möbius
En mathématiques, la fonction de Möbius désigne généralement une fonction multiplicative particulière, définie sur les entiers strictement positifs et à valeurs dans l'ensemble {–1, 0, 1}. Elle intervient dans la formule d'inversion de Möbius. Elle est utilisée dans des branches différentes des mathématiques. Vue sous un angle élémentaire, la fonction de Möbius permet certains calculs de dénombrement, en particulier pour l'étude des p-groupes ou en théorie des graphes.
Série de Dirichlet
En mathématiques, une série de Dirichlet est une série f(s) de fonctions définies sur l'ensemble C des nombres complexes, et associée à une suite (a) de nombres complexes de l'une des deux façons suivantes : Ici, la suite (λ) est réelle, positive, strictement croissante et non bornée. Le domaine de convergence absolue d'une série de Dirichlet est soit un demi-plan ouvert de C, limité par une droite dont tous les points ont même abscisse, soit l'ensemble vide, soit C tout entier. Le domaine de convergence simple est de même nature.
Fonction zêta de Riemann
vignette|upright=2|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : des couleurs vives indiquent des valeurs proches de 0 et la nuance indique l'argument de la valeur. Le point blanc pour s = 1 est le pôle ; les points noirs sur l'axe réel négatif (demi-droite horizontale) et sur la droite critique Re(s) = 1/2 (droite verticale) sont les zéros. vignette|upright=2|Carte des couleurs utilisées dans la figure du dessus.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.