Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.
Plonge dans l'invariance du théorème de domaine, prouvant qu'un sous-ensemble homéomorphe à un sous-ensemble ouvert est ouvert lui-même, avec des implications pour les incorporations et les homéomorphismes.
Couvre les théorèmes de dimension pour les transformations linéaires, la bijectivité, l'isomorphisme, les espaces doubles et les applications canoniques.