Passer au contenu principal
Graph
Search
fr
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Concept
Sentence (mathematical logic)
Graph Chatbot
Séances de cours associées (10)
Connectez-vous pour filtrer par séance de cours
Connectez-vous pour filtrer par séance de cours
Réinitialiser
Précédent
Page 1 sur 1
Suivant
Théorie des ensembles : introduction et opérations
Couvre les fondements des mathématiques à travers des concepts de théorie des ensembles tels que l'adhésion et les syndicats.
Introduction aux scripts de preuve: bases de Ltac
Présente les bases du script de preuve en Coq, en se concentrant sur le langage Ltac et ses tactiques pour gérer efficacement les preuves.
Séquences et convergence : comprendre les fondements mathématiques
Couvre les concepts de séquences, de convergence et de limite en mathématiques.
Fonctions d'injection : propriétés et exemples
Couvre les propriétés des fonctions injectives et démontre leurs preuves à travers des exemples et des aides visuelles.
La logique des prédicats : les équivalences, les négations et les lois de De Morgan
Explore la distribution des quantificateurs, des équivalences logiques et des négations dans la logique des prédicats.
Preuves et ensembles: Applications
Couvre les bases des preuves, définissant des ensembles et des applications entre les ensembles.
Comprendre les relations d'équivalence et la construction d'entiers
Couvre la construction d'entiers par des relations d'équivalence et leurs propriétés en mathématiques.
Structure logique: principes de choix et d'induction de barre
Couvre la structure logique des principes équivalents au choix et à l'induction de barre, en se concentrant sur le choix dépendant généralisé et ses implications en mathématiques.
Introduction à Coq: Expressions arithmétiques et évaluateurs
Couvre les bases de Coq, en se concentrant sur les expressions arithmétiques, l'évaluation et les techniques de preuve.
Énumérabilité récursive: Machines de Turing et langages indécidables
Couvre les langages énumérables récursivement, les machines de Turing et la construction de langages indécidables.