Ensemble bien ordonnéEn mathématiques, un ensemble ordonné (E, ≤) est bien ordonné et la relation ≤ est un bon ordre si la condition suivante est satisfaite : Toute partie non vide de E possède un plus petit élément. Formellement cela donne ∀X⊆E, X≠∅ ⇒ (∃u∈X, ∀v∈X u≤v). Si (E, ≤) est bien ordonné alors ≤ est nécessairement un ordre total, c'est-à-dire que deux éléments quelconques x et y de E sont toujours comparables. En effet, l'ensemble { x, y } possède un plus petit élément, donc on a x ≤ y ou y ≤ x.
Ordinal limiteEn mathématiques et plus précisément en théorie des ensembles, un ordinal limite est un nombre ordinal non nul qui n'est pas un ordinal successeur. D'après la définition ci-dessus, un ordinal α est limite si et seulement s'il satisfait l'une des propositions équivalentes suivantes : α ≠ 0 et ∀ β β+1 ≠ α ; 0 < α et ∀ β < α β+1 < α ; α ≠ 0 et ∀ β < α ∃ γ β < γ < α ; α est non nul et égal à la borne supérieure de tous les ordinaux qui lui sont strictement inférieurs (l'ensemble des ordinaux strictement inférieurs à un ordinal successeur β +1 possède un plus grand élément, l'ordinal β) ; en tant qu'ensemble d'ordinaux, α n'est pas vide et ne possède pas de plus grand élément ; α peut s'écrire sous la forme ω·γ avec γ > 0 ; α est un point d'accumulation de la classe des nombres ordinaux, munie de la topologie de l'ordre.
PrébaseEn mathématiques, plus précisément en topologie, une prébase A d'une topologie T sur un ensemble X est un ensemble de parties de X qui engendre T, c'est-à-dire tel que T soit la plus petite topologie sur X pour laquelle tous les éléments de A sont des ouverts. Un ensemble de parties d'un ensemble X est donc toujours une prébase d'une certaine topologie sur X (celle qu'il engendre), ce qui est une différence avec la notion de base d'une topologie : un ensemble de parties de X n'est une base d'une certaine topologie que si l'intersection de deux éléments quelconques de cet ensemble est une union d'éléments de ce même ensemble.
List of topologiesThe following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property. Discrete topology − All subsets are open. Indiscrete topology, chaotic topology, or Trivial topology − Only the empty set and its complement are open.
Ouvert-ferméEn topologie, un ouvert-fermé est un sous-ensemble d'un espace topologique X qui est à la fois ouvert et fermé. Il peut sembler contre-intuitif que de tels ensembles existent, puisqu'au sens usuel, « ouvert » et « fermé » sont antonymes. Mais au sens mathématique, ces deux notions ne sont pas mutuellement exclusives : une partie de X est dite fermée si son complémentaire dans X est ouvert, donc un ouvert-fermé est simplement un ouvert dont le complémentaire est aussi ouvert.
Planche de TychonoffEn mathématiques, la planche de Tychonoff — nommée d'après Andreï Nikolaïevitch Tikhonov — est un espace topologique utilisé comme contre-exemple. C'est le produit [0, ω]×[0, ω] de deux espaces topologiques associés à des ordinaux, où ω désigne le premier ordinal infini et ω le premier ordinal non dénombrable. La planche de Tychonoff épointée est le sous-espace obtenu en enlevant le point ∞ = (ω, ω). C'est un espace non normal, bien que localement compact donc complètement régulier.
Cofinal (mathematics)In mathematics, a subset of a preordered set is said to be cofinal or frequent in if for every it is possible to find an element in that is "larger than " (explicitly, "larger than " means ). Cofinal subsets are very important in the theory of directed sets and nets, where “cofinal subnet” is the appropriate generalization of "subsequence".