Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Society for Industrial and Applied MathematicsLa Society for Industrial and Applied Mathematics (SIAM), est une association en mathématiques. Fondée en , elle comptait alors une centaine de membres. En , elle compte plus de , surtout en Amérique du Nord, en Extrême-Orient, au Royaume-Uni et en Irlande. Des universités en sont aussi membres.
MATLABMATLAB (« matrix laboratory ») est un langage de script émulé par un environnement de développement du même nom ; il est utilisé à des fins de calcul numérique. Développé par la société The MathWorks, MATLAB permet de manipuler des matrices, d'afficher des courbes et des données, de mettre en œuvre des algorithmes, de créer des interfaces utilisateurs, et peut s’interfacer avec d’autres langages comme le C, C++, Java, et Fortran.
Association for Computing MachineryL'ACM (en anglais « Association for Computing Machinery », littéralement « association pour les machines de calcul ») est une association internationale à but non lucratif fondée en 1947, la première à être vouée à l'informatique. Sa mission consiste à développer et soutenir la recherche scientifique et l'innovation informatique. Elle siège dans la ville de New York aux États-Unis. La structure organisationnelle de l'ACM se décline en trois catégories d'antennes : thématiques, professionnelles et étudiantes.
Mathématicienthumb|Carl Friedrich Gauss, aussi appelé « prince des mathématiciens ». alt=Emmy Noether|vignette|Emmy Noether Un mathématicien ou une mathématicienne est au sens restreint un chercheur ou une chercheuse en mathématiques, par extension toute personne faisant des mathématiques la base de son activité principale. Ce terme recouvre une large palette de compétences et de pratiques très différentes, avec néanmoins en commun un vocabulaire et un formalisme spécifiques, ainsi qu'une exigence de rigueur propre à cette discipline.
Matrix decompositionIn the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For instance, when solving a system of linear equations , the matrix A can be decomposed via the LU decomposition.
Gaussian eliminationIn mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of operations performed on the corresponding matrix of coefficients. This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of an invertible matrix. The method is named after Carl Friedrich Gauss (1777–1855).
Matrice creuseDans la discipline de l'analyse numérique des mathématiques, une matrice creuse est une matrice contenant beaucoup de zéros. Conceptuellement, les matrices creuses correspondent aux systèmes qui sont peu couplés. Si on considère une ligne de balles dont chacune est reliée à ses voisines directes par des élastiques, ce système serait représenté par une matrice creuse. Au contraire, si chaque balle de la ligne est reliée à toutes les autres balles, ce système serait représenté par une matrice dense.
Factorisation de CholeskyLa factorisation de Cholesky, nommée d'après André-Louis Cholesky, consiste, pour une matrice symétrique définie positive , à déterminer une matrice triangulaire inférieure telle que : . La matrice est en quelque sorte une « racine carrée » de . Cette décomposition permet notamment de calculer la matrice inverse , de calculer le déterminant de A (égal au carré du produit des éléments diagonaux de ) ou encore de simuler une loi multinormale. Elle est aussi utilisée en chimie quantique pour accélérer les calculs (voir Décomposition de Cholesky (chimie quantique)).
Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.