Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.
Hiérarchie polynomialeEn théorie de la complexité, la hiérarchie polynomiale est une hiérarchie de classes de complexité qui étend la notion de classes P, NP, co-NP. La classe PH est l'union de toutes les classes de la hiérarchie polynomiale. Il existe plusieurs définitions équivalentes des classes de la hiérarchie polynomiale. On peut définir la hiérarchie à l'aide des quantificateurs universel () et existentiel ().
BPP (complexité)En informatique théorique, plus précisément en théorie de la complexité, la classe BPP (bounded-error probabilistic polynomial time) est la classe de problèmes de décision décidés par une machine de Turing probabiliste en temps polynomial, avec une probabilité d'erreur dans la réponse inférieure à 1/3. La classe BPP est l'ensemble des problèmes, ou de façon équivalente des langages, pour lesquels il existe une machine de Turing probabiliste en temps polynomial qui satisfait les conditions d'acceptation suivantes : Si le mot n'est pas dans le langage, la machine le rejette avec une probabilité supérieure à 2/3.
Complet (complexité)En informatique théorique, et notamment en théorie de la complexité, un problème complet pour une classe de complexité est un problème de décision qui fait partie des problèmes les plus difficiles à résoudre de cette classe. En ce sens, il est un représentant de la classe. C'est une notion centrale en complexité. Elle permet notamment d'établir des inclusions entre les classes en ne considérant qu'un seul problème. Un problème p est dit difficile pour une classe C pour un certain type de réduction s'il existe une réduction de ce type, depuis n'importe quel problème de la classe vers p.
Test de primalitévignette|Le 39e nombre premier de Mersenne découvert à ce jour pour un article sur la primalité Un test de primalité est un algorithme permettant de savoir si un nombre entier est premier. Le test le plus simple est celui des divisions successives : pour tester N, on vérifie s’il est divisible par l’un des entiers compris au sens large entre 2 et N-1. Si la réponse est négative, alors N est premier, sinon il est composé.
L (complexité)En informatique théorique, et notamment dans la théorie de la complexité, la classe L est la classe des problèmes de décision décidés par une machine de Turing déterministe qui utilise un espace de taille logarithmique en fonction de la taille de l'entrée. Pour être plus précis, l'exigence sur l'espace de taille logarithmique se réfère à l'espace supplémentaire utilisable. Elle est aussi parfois notée LOGSPACE.
Function problemIn computational complexity theory, a function problem is a computational problem where a single output (of a total function) is expected for every input, but the output is more complex than that of a decision problem. For function problems, the output is not simply 'yes' or 'no'. A functional problem is defined by a relation over strings of an arbitrary alphabet : An algorithm solves if for every input such that there exists a satisfying , the algorithm produces one such , and if there are no such , it rejects.
Complémentaire (complexité)En théorie de la complexité (un domaine de l'informatique théorique), on parle du complémentaire d'une classe C, noté co-C ou coC, pour désigner l'ensemble des langages complémentaires des langages de la classe. Cet opérateur amène à considérer de nouvelles classes comme co-NP, le complémentaire de NP. Soit un langage sur l'alphabet , et , l'ensemble des mots sur . Alors le complémentaire de , noté ici est . On remarque en particulier que le complémentaire de est . Soit C une classe, alors son complémentaire co-C est : .
Complexité descriptiveEn informatique théorique, la complexité descriptive est une branche de la théorie de la complexité et de la théorie des modèles, qui caractérise les classes de complexité en termes de logique qui permet de décrire les problèmes. La complexité descriptive donne un nouveau point de vue car on définit des classes de complexité sans faire appel à une notion de machines comme les machines de Turing. Par exemple la classe NP correspond à l'ensemble des problèmes exprimables en logique du second ordre existentielle : c'est le théorème de Fagin.
Problème de comptageEn théorie de la complexité et en théorie de la calculabilité, un problème de comptage est un type particulier de problème algorithmique. Étant donné un problème algorithmique consistant à trouver une solution, on peut définir le problème de comptage associé, qui consiste à calculer le nombre de solutions. Des classes de complexité spécifiques existent pour les problèmes de comptage, dont la plus connue #P qui est l'analogue de la classe NP pour les problèmes de décision.