Lacet (mathématiques)En mathématiques, notamment en analyse complexe et en topologie, un lacet est la modélisation d'une « boucle ». C'est un chemin continu et fermé, c'est-à-dire que ses extrémités sont confondues. Par exemple, tout cercle dans le plan euclidien est un lacet. Soit est un espace topologique. Définition 1 : On appelle lacet sur toute application continue telle que . Autrement dit, un lacet sur est un chemin sur dont les deux extrémités (le point initial et le point final) sont identiques.
Espace pointéEn topologie, un espace pointé est un espace topologique dont on spécifie un point particulier comme étant le point de base. Formellement, il s'agit donc d'un couple (E, x) pour lequel x est un élément de E. Une application pointée entre deux espaces pointés est une application continue préservant les points de base. Les espaces pointés sont les objets d'une catégorie, notée parfois Top, dont les morphismes sont les applications pointées. Cette catégorie admet le point comme objet nul.
Path space fibrationIn algebraic topology, the path space fibration over a based space is a fibration of the form where is the path space of X; i.e., equipped with the compact-open topology. is the fiber of over the base point of X; thus it is the loop space of X. The space consists of all maps from I to X that may not preserve the base points; it is called the free path space of X and the fibration given by, say, , is called the free path space fibration. The path space fibration can be understood to be dual to the mapping cone.
Suspension (mathématiques)En mathématiques, la suspension est une construction topologique définie par écrasement des extrémités d'un cylindre. Elle permet notamment de définir les sphères S par récurrence. Si l'espace topologique est pointé, sa suspension réduite est le quotient de la suspension par le cylindre sur le point de base, c'est un espace pointé avec un point base canonique. La suspension est un foncteur de la catégorie des espaces topologiques (pointés ou non) dans elle-même.
Chemin (topologie)En mathématiques, notamment en analyse complexe et en topologie, un chemin est la modélisation d'une succession continue de points entre un point initial et un point final. On parle aussi de chemin orienté. Soit X un espace topologique. On appelle chemin ou arc sur X toute application continue . Le point initial du chemin est f(0) et le point final est f(1). Ces deux points constituent les extrémités du chemin. Lorsque A désigne le point initial et B le point final du chemin (cf.
H-espaceEn mathématiques, un H-espace est une version d'une généralisation de la notion de groupe topologique, dans laquelle les axiomes d' sont supprimés. Un H-espace est constitué d'un espace topologique X, ainsi que d'un élément e de X et d'une application continue , tel que et les applications et sont toutes les deux homotopes à l'application identité relativement à e. Cet espace peut être considéré comme un espace topologique pointé avec une multiplication continue pour laquelle le point de base est un , à homotopie près préservant le point de base.
Théorème de suspension de FreudenthalLe théorème de suspension de Freudenthal est un théorème de mathématiques démontré en 1937 par Hans Freudenthal. C'est un résultat fondamental sur l'homotopie, qui explique le comportement des groupes d'homotopie d'un espace pointé lorsqu'on en prend la suspension et qui conduit à la théorie de l'homotopie stable. Soit X un CW-complexe pointé n-connexe. L'application X → Ω(X ∧ S), où Ω désigne le foncteur espace des lacets et ∧ le smash-produit, induit un morphisme de groupesπ(X) → π(Ω(X ∧ S)) ≃ π(X ∧ S).
Smash-produitEn mathématiques et plus précisément en topologie algébrique, le smash-produit X∧Y de deux espaces topologiques pointés (X, x) et (Y, y) est le quotient du produit X × Y par les identifications pour tout x ∈ X et tout y ∈ Y. Cet espace dépend du pointage (sauf si X et Y sont homogènes). Les espaces X et Y sont plongés dans X × Y par identification aux sous-espaces X × {y} et {x} × Y, qui s'intersectent en un seul point : (x, y), le point base de X × Y.
FibrationEn théorie de l'homotopie, une fibration est une application continue entre espaces topologiques satisfaisant une propriété de relèvement des homotopies, qui est satisfaite en général par les projections fibrées. Les fibrations de Serre relèvent les homotopies depuis les CW-complexes tandis que les fibrations de Hurewicz relèvent les homotopies depuis n'importe quel espace topologique.
Groupe d'homotopieEn mathématiques, et plus particulièrement en topologie algébrique, les groupes d'homotopie sont des invariants qui généralisent la notion de groupe fondamental aux dimensions supérieures. Il y a plusieurs définitions équivalentes possibles. Première définition Soit X un espace topologique et un point de X. Soit la boule unité de dimension i de l'espace euclidien . Son bord est la sphère unité de dimension . Le i-ième groupe d'homotopie supérieur est l'ensemble des classes d'homotopie relative à d'applications continues telle que : .