Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Théorie de la complexité (informatique théorique)vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.
Informatiquealt=Salle informatique de la bibliothèque d'Art et d'Archéologie de Genève|vignette|Salle informatique de la bibliothèque d'Art et d'Archéologie de Genève (2017). L'informatique est un domaine d'activité scientifique, technique, et industriel concernant le traitement automatique de l'information numérique par l'exécution de programmes informatiques hébergés par des dispositifs électriques-électroniques : des systèmes embarqués, des ordinateurs, des robots, des automates Ces champs d'application peuvent être séparés en deux branches : théorique : concerne la définition de concepts et modèles ; pratique : s'intéresse aux techniques concrètes de mise en œuvre.
Recherche dichotomiqueLa recherche dichotomique, ou recherche par dichotomie (), est un algorithme de recherche pour trouver la position d'un élément dans un tableau trié. Le principe est le suivant : comparer l'élément avec la valeur de la case au milieu du tableau ; si les valeurs sont égales, la tâche est accomplie, sinon on recommence dans la moitié du tableau pertinente. Le nombre d'itérations de la procédure, c'est-à-dire le nombre de comparaisons, est logarithmique en la taille du tableau.
Mathématiquesthumb|upright|Raisonnement mathématique sur un tableau. Les mathématiques (ou la mathématique) sont un ensemble de connaissances abstraites résultant de raisonnements logiques appliqués à des objets divers tels que les ensembles mathématiques, les nombres, les formes, les structures, les transformations ; ainsi qu'aux relations et opérations mathématiques qui existent entre ces objets. Elles sont aussi le domaine de recherche développant ces connaissances, ainsi que la discipline qui les enseigne.
Comparaison asymptotiqueEn mathématiques, plus précisément en analyse, la comparaison asymptotique est une méthode consistant à étudier la vitesse de croissance d'une fonction au voisinage d'un point ou à l'infini, en la comparant à celle d'une autre fonction considérée comme plus « simple ». Celle-ci est souvent choisie sur une échelle de référence, contenant en général au moins certaines fonctions dites élémentaires, en particulier les sommes et produits de polynômes, d'exponentielles et de logarithmes.
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Logarithmevignette|Tracés des fonctions logarithmes en base 2, e et 10. En mathématiques, le logarithme (de logos : rapport et arithmos : nombre) de base d'un nombre réel strictement positif est la puissance à laquelle il faut élever la base pour obtenir ce nombre. Dans le cas le plus simple, le logarithme compte le nombre d'occurrences du même facteur dans une multiplication répétée : comme 1000 = 10×10×10 = 10, le logarithme en base 10 de 1000 est 3. Le logarithme de en base est noté : . John Napier a développé les logarithmes au début du .
Donald KnuthDonald Ervin Knuth ([kə.ˈnuːθ]), né le à Milwaukee dans le Wisconsin, est un informaticien et mathématicien américain de renom, professeur émérite en informatique à l'université Stanford (en tant que « professeur émérite de l'art de programmer »). Il est un des pionniers de l'algorithmique et a fait de nombreuses contributions dans plusieurs branches de l'informatique théorique.
Tri fusionEn informatique, le tri fusion, ou tri dichotomique, est un algorithme de tri par comparaison stable. Sa complexité temporelle pour une entrée de taille n est de l'ordre de n log n, ce qui est asymptotiquement optimal. Ce tri est basé sur la technique algorithmique diviser pour régner. L'opération principale de l'algorithme est la fusion, qui consiste à réunir deux listes triées en une seule. L'efficacité de l'algorithme vient du fait que deux listes triées peuvent être fusionnées en temps linéaire.