Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'estimation de la probabilité maximale, la régression logistique, l'estimation de la covariance et les machines vectorielles de soutien pour les problèmes de classification.
Introduit les bases de l'apprentissage automatique supervisé, couvrant les types, les techniques, le compromis biais-variance et l'évaluation du modèle.
Discute de la méthode de gradient pour l'optimisation, en se concentrant sur son application dans l'apprentissage automatique et les conditions de convergence.
Couvre la théorie des probabilités de base, l'ANOVA, la conception expérimentale et les corrélations, en soulignant l'importance de la planification de tests multiples et de l'analyse de puissance.
Explore les modèles de choix binaires comme probit et logit, ainsi que l'analyse de séries temporelles univariées avec les modèles ARIMA pour la prévision des variables économiques.
Introduit une analyse de régression, couvrant les modèles linéaires et non linéaires, la régression de Poisson et l'analyse du temps de défaillance à l'aide de divers ensembles de données.