Espace des phasesdroite|vignette| Trajectoires dans l'espace des phases pour un pendule simple. L'axe X correspond à la position du pendule, et l'axe Y sa vitesse. Dans la théorie des systèmes dynamiques, l'espace des phases (ou espace d'état) d'un système est l'espace mathématique dans lequel tous les états possibles du système sont représentés ; chaque état possible correspondant à un point unique dans l'espace des phases. Pour un système mécanique, l'espace des phases se compose généralement de toutes les valeurs possibles des variables de position et d'impulsion représentant le système.
Référentiel non inertielUn référentiel non inertiel, ou non galiléen, est un référentiel qui ne vérifie pas les conditions nécessaires pour être inertiel (galiléen). Les deux premières lois du mouvement de Newton n'y sont vérifiées qu'en invoquant des forces supplémentaires appelées forces d'inertie, souvent qualifiées de « fictives », qui sont dues au mouvement accéléré du référentiel par rapport à un référentiel inertiel. Dans un référentiel inertiel, un corps ponctuel libre de toute influence a un mouvement inertiel qui suit un mouvement rectiligne uniforme.
Propagateur de l'équation de SchrödingerEn physique, un propagateur est une fonction de Green particulière utilisée en électrodynamique quantique, qui peut être interprétée comme l'amplitude de probabilité pour qu'une particule élémentaire se déplace d'un endroit à un autre dans un temps donné. Le terme propagateur a été introduit en physique par Feynman en 1948 pour sa formulation de la mécanique quantique en intégrales de chemin, une nouvelle approche de la quantification centrée sur le Lagrangien, contrairement à la procédure habituelle de quantification canonique fondée sur le hamiltonien.
Opérateur (physique)Un opérateur est, en mécanique quantique, une application linéaire d'un espace de Hilbert dans lui-même. Le terme est une spécialisation du concept mathématique d'opérateur. Une observable est un opérateur hermitien. En mécanique classique, le mouvement des particules (ou d'un système de particules) est complètement déterminé par le Lagrangien ou, de façon équivalente, l'Hamiltonien , une fonction des coordonnées généralisées q, vitesse généralisée et son moment conjugué : Si ou est indépendant des coordonnées généralisées , donc que et ne changent pas en fonction de , le moment conjugué de ces coordonnées sera conservé (c'est une partie du théorème de Noether, et l'invariance du mouvement en respect de la coordonnée est une symétrie).
Three-body problemIn physics and classical mechanics, the three-body problem is the problem of taking the initial positions and velocities (or momenta) of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's law of universal gravitation. The three-body problem is a special case of the n-body problem. Unlike two-body problems, no general closed-form solution exists, as the resulting dynamical system is chaotic for most initial conditions, and numerical methods are generally required.
Force conservativeUne force est dite conservative lorsque le travail produit par cette force est indépendant du chemin suivi par son point d'action. Dans le cas contraire, la force est dite non conservative. Les forces conservatives possèdent trois propriétés remarquables : Une force conservative dérive d'une énergie potentielle : ; Le travail exercé par la force est égal à l'opposé de la variation de l'énergie potentielle : ; L'énergie mécanique d'un système, somme de l'énergie cinétique et de l'énergie potentielle, soumis uniquement à l'action de forces conservatives est conservée : ; l'énergie potentielle est convertie en énergie cinétique.
Équilibre statique (mécanique)En physique, un équilibre statique est un mouvement nul. Dans le cas d’un système matériel quelconque, un mouvement nul se traduit par un champ de vecteurs vitesses nul. Dans le cas d’un solide indéformable, ce mouvement particulier est caractérisé par un torseur cinématique nul Pour un système de plusieurs solides, il faut écrire les conditions précédentes pour chacun des solides. Ceci est une conséquence du « principe fondamental de la statique » qui stipule que « la somme et le moment de toutes les forces qui s'exercent sur lui est nulle.
Rotation de WickEn physique, la rotation de Wick est une méthode pour trouver une solution à un problème mathématique dans un espace de Minkowski à partir d'un problème relatif à un espace euclidien, à l’aide d’une transformation qui substitue une variable imaginaire pure à une variable réelle. La est la transformation complexe où est l'unité imaginaire et est le temps euclidien. Son éponyme est le physicien théoricien italien Gian-Carlo Wick (-) qui l'a proposée en .
Hamiltonian opticsHamiltonian optics and Lagrangian optics are two formulations of geometrical optics which share much of the mathematical formalism with Hamiltonian mechanics and Lagrangian mechanics. Hamilton's principle In physics, Hamilton's principle states that the evolution of a system described by generalized coordinates between two specified states at two specified parameters σA and σB is a stationary point (a point where the variation is zero) of the action functional, or where and is the Lagrangian.
Analytical dynamicsIn classical mechanics, analytical dynamics, also known as classical dynamics or simply dynamics, is concerned with the relationship between motion of bodies and its causes, namely the forces acting on the bodies and the properties of the bodies, particularly mass and moment of inertia. The foundation of modern-day dynamics is Newtonian mechanics and its reformulation as Lagrangian mechanics and Hamiltonian mechanics.