DodécadodécaèdreIn geometry, the dodecadodecahedron is a nonconvex uniform polyhedron, indexed as U36. It is the rectification of the great dodecahedron (and that of its dual, the small stellated dodecahedron). It was discovered independently by , and . The edges of this model form 10 central hexagons, and these, projected onto a sphere, become 10 great circles. These 10, along with the great circles from projections of two other polyhedra, form the 31 great circles of the spherical icosahedron used in construction of geodesic domes.
Figure isotoxaleEn géométrie, un polytope (un polygone, un polyèdre ou un pavage, par exemple) est isotoxal si son groupe de symétrie agit transitivement sur ses côtés. Informellement, cela veut dire qu'il y a un seul type de côté dans cet objet : pour deux côtés de l'objet, il y a une translation, une rotation et/ou une réflexion qui transforme un côté en l'autre, tout en laissant la région occupée par l'objet inchangée. Le terme isotoxal est dérivé du Grec τοξον qui veut dire arc.
Polyèdre étoiléEn géométrie, le terme polyèdre étoilé ne semble pas avoir été défini proprement, même si l'objet est pensé dans le sens commun. On peut dire qu'un polyèdre étoilé est un polyèdre qui possède une certaine qualité répétitive de non-convexité lui donnant l'aspect d'une étoile. Il existe deux espèces générales de polyèdres étoilés : Les polyèdres qui s'auto-intersectent d'une manière répétitive. Les polyèdres concaves d'une sorte particulière qui alternent les parties concaves et convexes ou les sommets de selle d'une manière répétitive.
Regular PolytopesRegular Polytopes est un livre de mathématiques écrit par le mathématicien canadien Harold Scott MacDonald Coxeter. Initialement publié en 1947, le livre a été mis à jour et réédité en 1963 et 1973. Le livre est une étude complète de la géométrie des polytopes réguliers, c'est-à-dire les polygones et polyèdres réguliers ainsi que leurs généralisations aux dimensions supérieures. Provenant d'un essai intitulé L'Analogie dimensionnelle écrit en 1923, la première édition du livre a pris à Coxeter vingt-quatre ans.
Cuboctaèdrethumb|Cuboctaèdre vu comme cube rectifié. thumb|Patron de cuboctaèdre. Un cuboctaèdre est un polyèdre à 14 faces régulières, dont huit sont des triangles équilatéraux et six sont des carrés. Il comporte : 12 sommets identiques, chacun joignant deux triangles et deux carrés opposés deux à deux ; 24 arêtes identiques, chacune commune à un triangle et à un carré. Il s'agit donc d'un polyèdre quasi-régulier, c’est-à-dire un solide d'Archimède (uniformité des sommets) avec en plus, une uniformité des arêtes.
Pavage triangulaireIn geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}. English mathematician John Conway called it a deltille, named from the triangular shape of the Greek letter delta (Δ).
Polyèdre isoédriquevignette| Un jeu de dés isoédriques En géométrie, un polytope de dimension 3 (un polyèdre) ou plus est dit isoédrique lorsque ses faces sont identiques. Plus précisément, toutes les faces ne doivent pas être simplement isométriques, mais doivent être transitives, c'est-à-dire qu'elles doivent se trouver dans la même orbite de symétrie. En d'autres termes, pour toutes les faces A et B, il doit y avoir une symétrie de l'ensemble du solide par rotations et réflexions qui envoie A sur B.
Sphère médianevignette| Un polyèdre et sa sphère médiane en bleu. Les cercles rouges sont les limites des calottes sphériques dans lesquelles la surface de la sphère est visible depuis chaque sommet. vignette|Cube et son octaèdre dual avec sphère médiane commune. En géométrie, la sphère médiane ou intersphère d'un polyèdre est une sphère qui est tangente à chaque arête du polyèdre, c'est-à-dire qu'elle touche chacune des arêtes en exactement un point.