SurjectionEn mathématiques, une surjection ou application surjective est une application pour laquelle tout élément de l'ensemble d'arrivée a au moins un antécédent, c'est-à-dire est d'au moins un élément de l'ensemble de départ. Il est équivalent de dire que l' est égal à l'ensemble d'arrivée. Il est possible d'appliquer l'adjectif « surjectif » à une fonction (voire à une correspondance) dont le domaine de définition n'est pas tout l'ensemble de départ, mais en général le terme « surjection » est réservé aux applications (qui sont définies sur tout leur ensemble de départ), auxquelles nous nous limiterons dans cet article (pour plus de détails, voir le paragraphe « Fonction et application » de l'article « Application »).
Produit directLa plupart des structures algébriques permettent de construire de façon très simple une structure produit sur le produit cartésien des ensembles sous-jacents. Plus généralement, . C'est le cas de la topologie produit dans la catégorie des espaces topologiques. Soient E un ensemble muni d'une loi de composition interne et F un ensemble muni d'une loi de composition interne . On peut définir une loi de composition interne sur le produit cartésien E×F de la façon suivante : Si et sont associatives, alors la loi est associative.
Catégorie des ensemblesEn mathématiques, plus précisément en théorie des catégories, la catégorie des ensembles, notée Set ou Ens, est la catégorie dont les objets sont les ensembles, et dont les morphismes sont les applications d'un ensemble dans un autre. Sa définition est motivée par le fait qu'en théorie des ensembles usuelle, il n'existe pas d'« ensemble de tous les ensembles », car l'existence d'un tel objet résulterait en une contradiction logique : le paradoxe de Russell.
Théorème de König (théorie des ensembles)In set theory, König's theorem states that if the axiom of choice holds, I is a set, and are cardinal numbers for every i in I, and for every i in I, then The sum here is the cardinality of the disjoint union of the sets mi, and the product is the cardinality of the Cartesian product. However, without the use of the axiom of choice, the sum and the product cannot be defined as cardinal numbers, and the meaning of the inequality sign would need to be clarified.
Produit fibréEn mathématiques, le produit fibré est une opération entre deux ensembles munis tous deux d'une application vers un même troisième ensemble. Sa définition s'étend à certaines catégories en satisfaisant une propriété universelle de factorisation de diagrammes, en dualité avec la somme amalgamée. Le produit fibré est utilisé notamment en géométrie algébrique pour définir le produit de deux schémas, ou en topologie algébrique pour construire, à partir d'un espace fibré (tel un revêtement), un autre espace de même fibre, le , en remontant le long d'une application entre les deux bases, d'où l'appellation en anglais pullback (« tiré en arrière ») parfois utilisée en français.
Signature (logique)En calcul des prédicats et en algèbre universelle, une signature est une liste de symboles de constante, de fonction ou de relation, chacun ayant une arité. Dans certains formalismes, pour avoir moins de non-dit, la signature est une liste de couples (symbole, arité). La signature fournit les éléments primitifs pour la construction d'un langage du premier ordre sur cette signature. En calcul des prédicats à plusieurs types d'objets et en théorie des types, chaque symbole possède un type (l'arité n'est pas suffisante).
Ensemble des parties d'un ensembleEn mathématiques, l'ensemble des parties d'un ensemble, parfois appelé ensemble puissance, est l'ensemble de tous les sous-ensembles d'un ensemble donné (y compris cet ensemble lui-même et l'ensemble vide). Soit un ensemble. L'ensemble des parties de est l'ensemble, généralement noté , dont les éléments sont les sous-ensembles de : Il est également parfois noté , ou (gothique), ou encore (P de Weierstrass). Dans la théorie des ensembles de Zermelo, l'existence, pour tout ensemble , d'un tel ensemble , est postulée par l'axiome de l'ensemble des parties, et son unicité résulte de l'axiome d'extensionnalité.
Abus de notationEn mathématiques, un abus de notation est l'utilisation de symboles hors de leur usage d'origine de façon à résumer une expression, au risque de contrevenir à un formalisme en cours, voire d'obtenir une expression ambiguë. Par exemple, la notation , utilisée au pour désigner l'unité imaginaire, est abusive dans le formalisme actuel où le symbole radical est réservé aux nombres réels positifs. Un abus de notation courant est l'identification entre deux objets mathématiques différents, c'est-à-dire l'utilisation de l'un pour l'autre.
Ensemble d'arrivéeEn mathématiques, pour une application ou une fonctionSelon les sources, il y a distinction ou non entre les notions de fonction et dapplication'', voir Application_(mathématiques)#Fonction_et_application pour plus de détails. Ce qui est énoncé dans cet article est valable que la distinction soit faite ou non. donnée f : A → B, l'ensemble B est appelé l'ensemble d'arrivée (on dit parfois le but de f ou le codomaine''' de f). L'ensemble d'arrivée ne doit pas être confondu avec l' f(A) de f, qui est en général seulement un sous-ensemble de B.
Restriction (mathématiques)thumb|La fonction x2 n'admet pas de réciproque sur la droite réelle. Il faut restreindre sur les réels positifs pour pouvoir définir la racine carrée . En mathématiques, la restriction d'une fonction f est une fonction, souvent notée f ou , pour laquelle on ne considère que les valeurs prises par f sur un domaine A inclus dans le domaine de définition de f. Soit f : E → F une fonction sur un ensemble E vers un ensemble F.