Faisceau (géométrie)En géométrie, un faisceau est une famille d'objets géométriques partageant une propriété commune, par exemple l'ensemble de droites passant par un même point dans le plan, ou l'ensemble de cercles passant par deux points dans le plan. Si la définition d'un faisceau est assez vague, la caractéristique commune est que le faisceau est complètement déterminé par deux de ses éléments. De façon analogue, un ensemble d'objets géométriques déterminés par trois éléments quelconques est appelé un fibré.
Rational mappingIn mathematics, in particular the subfield of algebraic geometry, a rational map or rational mapping is a kind of partial function between algebraic varieties. This article uses the convention that varieties are irreducible. Formally, a rational map between two varieties is an equivalence class of pairs in which is a morphism of varieties from a non-empty open set to , and two such pairs and are considered equivalent if and coincide on the intersection (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible).
Théorème de DesarguesEn mathématiques, le théorème de Desargues, du nom du mathématicien et architecte Girard Desargues, est un théorème de géométrie projective, qui possède plusieurs variantes en géométrie affine. Il s'énonce uniquement en matière d'alignement de points et d'intersection de droites (voir ci-contre). Le théorème de Desargues se démontre dans un plan ou un espace construit sur un corps quelconque (non nécessairement commutatif).
Projective line over a ringIn mathematics, the projective line over a ring is an extension of the concept of projective line over a field. Given a ring A with 1, the projective line P(A) over A consists of points identified by projective coordinates. Let U be the group of units of A; pairs (a, b) and (c, d) from A × A are related when there is a u in U such that ua = c and ub = d. This relation is an equivalence relation. A typical equivalence class is written U[a, b]. P(A) = { U[a, b] : aA + bA = A }, that is, U[a, b] is in the projective line if the ideal generated by a and b is all of A.
Théorème de Pappusvignette|Configuration de Pappus : Dans l'hexagone AbCaBc, où les points A, B, C, d'une part et a, b, c d'autre part, sont alignés, les points X, Y, Z le sont aussi. Le théorème de Pappus est un théorème de géométrie concernant l'alignement de trois points : si on considère trois points alignés A, B, C et trois autres points également alignés a, b, c, les points d'intersection des droites (Ab)-(Ba), (Ac)-(Ca), et (Bc)-(Cb) sont également alignés.
CollineationIn projective geometry, a collineation is a one-to-one and onto map (a bijection) from one projective space to another, or from a projective space to itself, such that the of collinear points are themselves collinear. A collineation is thus an isomorphism between projective spaces, or an automorphism from a projective space to itself. Some authors restrict the definition of collineation to the case where it is an automorphism. The set of all collineations of a space to itself form a group, called the collineation group.
Éléments de géométrie algébriqueLes Éléments de géométrie algébrique, par Alexandre Grothendieck (rédigés avec la collaboration de Jean Dieudonné), ou EGA en abrégé, sont un traité inachevé de pages, en français, sur la géométrie algébrique, qui a été publié (en huit parties ou fascicules) entre 1960 et 1967 par l'Institut des hautes études scientifiques. Grothendieck tente d'y établir systématiquement les fondements de la géométrie algébrique, et y construit le concept des schémas, et le définit.
Coordonnées grassmanniennesLes coordonnées grassmanniennes sont une généralisation des coordonnées plückeriennes qui permettent de paramétrer les sous espaces de dimension de l'espace vectoriel par un élément de l'espace projectif de l'espace vectoriel des produits extérieurs des familles de vecteurs de . Le plongement plückerien est un plongement naturel de la variété grassmannienne dans l'espace projectif : Ce plongement est défini comme suit.
Formule genre-degréEn géométrie algébrique, la formule genre - degré est une équation reliant le degré d d'une courbe plane irréductible avec son genre arithmétique g par la formule : Ici « courbe plane » signifie que est une courbe fermée dans le plan projectif . Si la courbe est non singulière, le genre géométrique et le genre arithmétique sont égaux, mais si la courbe est singulière, avec seulement des singularités ordinaires, le genre géométrique a priori est plus petit. Plus précisément, une singularité ordinaire de multiplicité r diminue le genre de .
Quaternionic projective spaceIn mathematics, quaternionic projective space is an extension of the ideas of real projective space and complex projective space, to the case where coordinates lie in the ring of quaternions Quaternionic projective space of dimension n is usually denoted by and is a closed manifold of (real) dimension 4n. It is a homogeneous space for a Lie group action, in more than one way. The quaternionic projective line is homeomorphic to the 4-sphere. Its direct construction is as a special case of the projective space over a division algebra.