In mathematics, quaternionic projective space is an extension of the ideas of real projective space and complex projective space, to the case where coordinates lie in the ring of quaternions Quaternionic projective space of dimension n is usually denoted by
and is a closed manifold of (real) dimension 4n. It is a homogeneous space for a Lie group action, in more than one way. The quaternionic projective line is homeomorphic to the 4-sphere.
Its direct construction is as a special case of the projective space over a division algebra. The homogeneous coordinates of a point can be written
where the are quaternions, not all zero. Two sets of coordinates represent the same point if they are 'proportional' by a left multiplication by a non-zero quaternion c; that is, we identify all the
In the language of group actions, is the orbit space of by the action of , the multiplicative group of non-zero quaternions. By first projecting onto the unit sphere inside one may also regard as the orbit space of by the action of , the group of unit quaternions. The sphere then becomes a principal Sp(1)-bundle over :
This bundle is sometimes called a (generalized) Hopf fibration.
There is also a construction of by means of two-dimensional complex subspaces of , meaning that lies inside a complex Grassmannian.
The space , defined as the union of all finite 's under inclusion, is the classifying space BS3. The homotopy groups of are given by These groups are known to be very complex and in particular they are non-zero for infinitely many values of . However, we do have that
It follows that rationally, i.e. after localisation of a space, is an Eilenberg–Maclane space . That is (cf. the example K(Z,2)). See rational homotopy theory.
In general, has a cell structure with one cell in each dimension which is a multiple of 4, up to . Accordingly, its cohomology ring is , where is a 4-dimensional generator. This is analogous to complex projective space. It also follows from rational homotopy theory that has infinite homotopy groups only in dimensions 4 and .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
En mathématiques, la sphère de Riemann est une manière de prolonger le plan des nombres complexes avec un point additionnel à l'infini, de manière que certaines expressions mathématiques deviennent convergentes et élégantes, du moins dans certains contextes. Déjà envisagée par le mathématicien Carl Friedrich Gauss, elle est baptisée du nom de son élève Bernhard Riemann. Ce plan s'appelle également la droite projective complexe, dénoté .
In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a complex projective space label the complex lines through the origin of a complex Euclidean space (see below for an intuitive account). Formally, a complex projective space is the space of complex lines through the origin of an (n+1)-dimensional complex vector space.
En mathématiques, un espace classifiant pour un groupe topologique G est la base d’un fibré principal particulier EG → BG appelé fibré universel, induisant tous les fibrés ayant ce groupe de structure sur n’importe quel CW-complexe X par (pullback). Dans le cas d’un groupe discret, la définition d’espace classifiant correspond à celle d’un espace d'Eilenberg-MacLane K(G, 1), c’est-à-dire un espace connexe par arcs dont tous les groupes d'homotopie sont triviaux en dehors du groupe fondamental (lequel est isomorphe à G).
We develop a very general version of the hyperbola method which extends the known method by Blomer and Brudern for products of projective spaces to complete smooth split toric varieties. We use it to count Campana points of bounded log-anticanonical height ...
We prove that the real cohomology of semi-simple Lie groups admits boundary values, which are measurable cocycles on the Furstenberg boundary. This generalises known invariants such as the Maslov index on Shilov boundaries, the Euler class on projective sp ...
2022
We construct a modular desingularisation of (M) over bar (2,n)(P-r, d)(main). The geometry of Gorenstein singularities of genus two leads us to consider maps from prestable admissible covers; with this enhanced logarithmic structure, it is possible to desi ...