Résumé
Spectral methods are a class of techniques used in applied mathematics and scientific computing to numerically solve certain differential equations. The idea is to write the solution of the differential equation as a sum of certain "basis functions" (for example, as a Fourier series which is a sum of sinusoids) and then to choose the coefficients in the sum in order to satisfy the differential equation as well as possible. Spectral methods and finite element methods are closely related and built on the same ideas; the main difference between them is that spectral methods use basis functions that are generally nonzero over the whole domain, while finite element methods use basis functions that are nonzero only on small subdomains (compact support). Consequently, spectral methods connect variables globally while finite elements do so locally. Partially for this reason, spectral methods have excellent error properties, with the so-called "exponential convergence" being the fastest possible, when the solution is smooth. However, there are no known three-dimensional single domain spectral shock capturing results (shock waves are not smooth). In the finite element community, a method where the degree of the elements is very high or increases as the grid parameter h increases is sometimes called a spectral element method. Spectral methods can be used to solve differential equations (PDEs, ODEs, eigenvalue, etc) and optimization problems. When applying spectral methods to time-dependent PDEs, the solution is typically written as a sum of basis functions with time-dependent coefficients; substituting this in the PDE yields a system of ODEs in the coefficients which can be solved using any numerical method for ODEs. Eigenvalue problems for ODEs are similarly converted to matrix eigenvalue problems . Spectral methods were developed in a long series of papers by Steven Orszag starting in 1969 including, but not limited to, Fourier series methods for periodic geometry problems, polynomial spectral methods for finite and unbounded geometry problems, pseudospectral methods for highly nonlinear problems, and spectral iteration methods for fast solution of steady-state problems.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Aucun résultat

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement

MOOCs associés

Aucun résultat