Lexique de la théorie des graphesNOTOC Acyclique graphe ne contenant pas de cycle. Adjacence une liste d'adjacence est une structure de données constituée d'un tableau dont le -ème élément correspond à la liste des voisins du -ème sommet. Adjacence une matrice d'adjacence est une matrice carrée usuellement notée , de dimensions , dont chaque élément est égal au nombre d'arêtes incidentes (ayant pour extrémités) aux sommets d'indices et (pour un graphe simple non pondéré, ). Dans le cas d'un graphe pondéré, chaque élément est égal à la somme du poids des arêtes incidentes.
Mineur (théorie des graphes)La notion de mineur d'un graphe est un concept de théorie des graphes. Il a été défini et étudié par Robertson et Seymour dans une série d'articles intitulée Graph minors (I à XXIII), publiée dans le Journal of Combinatorial Theory entre 1983 et 2011. Soit un graphe non orienté fini. Un graphe est un mineur de s'il peut être obtenu en contractant des arêtes d'un sous-graphe de .
Coloration de graphethumb|Une coloration du graphe de Petersen avec 3 couleurs. En théorie des graphes, la coloration de graphe consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. On cherche souvent à utiliser le nombre minimal de couleurs, appelé nombre chromatique. La coloration fractionnaire consiste à chercher non plus une mais plusieurs couleurs par sommet et en associant des coûts à chacune.
Théorème des quatre couleursLe théorème des quatre couleurs indique qu'il est possible, en n'utilisant que quatre couleurs différentes, de colorier n'importe quelle carte découpée en régions connexes, de sorte que deux régions adjacentes (ou limitrophes), c'est-à-dire ayant toute une frontière (et non simplement un point) en commun reçoivent toujours deux couleurs distinctes. L'énoncé peut varier et concerner, de manière tout à fait équivalente, la coloration des faces d'un polyèdre ou celle des sommets d'un graphe planaire, en remplaçant la carte par un graphe dont les sommets sont les régions et les arêtes sont les frontières entre régions.
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Graphe completEn théorie des graphes, un graphe complet est un graphe simple dont tous les sommets sont adjacents deux à deux, c'est-à-dire que tout couple de sommets disjoints est relié par une arête. Si le graphe est orienté, on dit qu'il est complet si chaque paire de sommets est reliée par exactement deux arcs (un dans chaque sens). Un graphe complet est un graphe dont tous les sommets sont adjacents. À isomorphisme près, il n'existe qu'un seul graphe complet non orienté d'ordre n, que l'on note .
Graphe biparti completEn théorie des graphes, un graphe est dit biparti complet (ou encore est appelé une biclique) s'il est biparti et chaque sommet du premier ensemble est relié à tous les sommets du second ensemble. Plus précisément, il existe une partition de son ensemble de sommets en deux sous-ensembles et telle que chaque sommet de est relié à chaque sommet de . Si le premier ensemble est de cardinal m et le second ensemble est de cardinal n, le graphe biparti complet est noté . Si m = 1, le graphe complet biparti K1,n est une étoile et est noté .
Forbidden graph characterizationIn graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor. A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph K_5 and the complete bipartite graph K_3,3.
Graphe bipartiEn théorie des graphes, un graphe est dit biparti si son ensemble de sommets peut être divisé en deux sous-ensembles disjoints et tels que chaque arête ait une extrémité dans et l'autre dans . Un graphe biparti permet notamment de représenter une relation binaire. Il existe plusieurs façons de caractériser un graphe biparti. Par le nombre chromatique Les graphes bipartis sont les graphes dont le nombre chromatique est inférieur ou égal à 2. Par la longueur des cycles Un graphe est biparti si et seulement s'il ne contient pas de cycle impair.
Tracé de graphesEn théorie des graphes, le tracé de graphes consiste à représenter des graphes dans le plan. Le tracé de graphes est utile à des applications telles que la conception de circuits VLSI, l'analyse de réseaux sociaux, la cartographie, et la bio-informatique. Les graphes sont généralement représentés en utilisant des points, disques ou boites pour représenter les sommets, et des courbes ou des segments pour représenter les arêtes. Pour les graphes orientés, on utilise habituellement ses flèches en bout d'arête pour représenter l'orientation.