ParaboloïdeEn mathématiques, un paraboloïde est une surface du second degré de l'espace euclidien. Il fait donc partie des quadriques, avec pour caractéristique principale de ne pas posséder de centre de symétrie. Certaines sections d'un paraboloïde avec un plan sont des paraboles. D'autres sont, selon le cas, des ellipses ou des hyperboles. On distingue donc les paraboloïdes elliptiques et les paraboloïdes hyperboliques. Cette surface peut s'obtenir en faisant glisser une parabole sur une autre parabole tournant sa concavité dans la même direction.
Pappus d'AlexandrieNOTOC Pappus d'Alexandrie — nom latinisé de Pappos d'Alexandrie, en grec — est l'un des plus importants mathématiciens de la Grèce antique. Il est né à Alexandrie en Égypte et a vécu au Très peu de choses sur sa vie sont connues. Les écrits nous suggèrent qu'il fut précepteur. Son principal ouvrage est connu sous le nom de Synagogè (paru vers 340 de notre ère). Il comprend au moins huit volumes qui nous sont parvenus, le reste ayant été perdu.
Projection (mathematics)In mathematics, a projection is an idempotent mapping of a set (or other mathematical structure) into a subset (or sub-structure). In this case, idempotent means that projecting twice is the same as projecting once. The restriction to a subspace of a projection is also called a projection, even if the idempotence property is lost. An everyday example of a projection is the casting of shadows onto a plane (sheet of paper): the projection of a point is its shadow on the sheet of paper, and the projection (shadow) of a point on the sheet of paper is that point itself (idempotency).
Projective rangeIn mathematics, a projective range is a set of points in projective geometry considered in a unified fashion. A projective range may be a projective line or a conic. A projective range is the dual of a pencil of lines on a given point. For instance, a correlation interchanges the points of a projective range with the lines of a pencil. A projectivity is said to act from one range to another, though the two ranges may coincide as sets. A projective range expresses projective invariance of the relation of projective harmonic conjugates.
Projective line over a ringIn mathematics, the projective line over a ring is an extension of the concept of projective line over a field. Given a ring A with 1, the projective line P(A) over A consists of points identified by projective coordinates. Let U be the group of units of A; pairs (a, b) and (c, d) from A × A are related when there is a u in U such that ua = c and ub = d. This relation is an equivalence relation. A typical equivalence class is written U[a, b]. P(A) = { U[a, b] : aA + bA = A }, that is, U[a, b] is in the projective line if the ideal generated by a and b is all of A.
Linear fractional transformationIn mathematics, a linear fractional transformation is, roughly speaking, an invertible transformation of the form The precise definition depends on the nature of a, b, c, d, and z. In other words, a linear fractional transformation is a transformation that is represented by a fraction whose numerator and denominator are linear. In the most basic setting, a, b, c, d, and z are complex numbers (in which case the transformation is also called a Möbius transformation), or more generally elements of a field.
PerspectivityIn geometry and in its applications to drawing, a perspectivity is the formation of an image in a picture plane of a scene viewed from a fixed point. The science of graphical perspective uses perspectivities to make realistic images in proper proportion. According to Kirsti Andersen, the first author to describe perspectivity was Leon Alberti in his De Pictura (1435). In English, Brook Taylor presented his Linear Perspective in 1715, where he explained "Perspective is the Art of drawing on a Plane the Appearances of any Figures, by the Rules of Geometry".
Corrado SegreCorrado Segre ( à Saluces - à Turin) est un mathématicien italien. Il est surtout connu pour ses contributions majeures au développement de la géométrie algébrique et est considéré comme le fondateur de l'École italienne de géométrie algébrique. Il étudie à l'université de Turin avec Enrico D'Ovidio et Francesco Faà di Bruno et obtient son diplôme en 1883. En 1884 il reçoit le prix mathématique de l'Académie italienne des sciences. Catégorie:Naissance à Saluces Catégorie:Mathématicien italien du XIXe siècle
Gino FanoGino Fano (né le à Mantoue et mort le à Vérone) est un mathématicien italien. Gino Fano est né dans une famille aisée et juive de Mantoue. Son père Ugo, patriote et garibaldiste dans sa jeunesse, veut qu'il soit militaire de carrière dans l'armée du nouvel état italien unifié. Mais à 17 ans, Gino quitte en 1888 le collège militaire de Milan pour s'inscrire à l'École polytechnique de Turin. Il passe par la faculté de Mathématique, en 1892 il soutient sous la direction du professeur Corrado Segre une thèse sur la géométrie hyperspatiale.
Jean-Victor Ponceletthumb|L'école Fabert (Metz), où Poncelet fut interne. Jean-Victor Poncelet (1788-1867) est un mathématicien, ingénieur et général français. Général commandant l'École polytechnique de 1848 à 1850, il inventa un modèle de turbine et un système de pont-levis à contre-poids variable, qui porte son nom. Jean-Victor Poncelet naquit le , à Metz, une place-forte des Trois-Évêchés. Après ses humanités au Lycée Fabert de Metz, il choisit naturellement la carrière des armes.