Morphisme platEn géométrie algébrique, un morphisme de schémas peut être vu comme une famille de schémas paramétrée par les points de Y. La notion de platitude de f est une sorte de continuité de cette famille. Un morphisme est dit plat en un point x de X si l'homomorphisme d'anneaux induit par f est plat. On dit que f est un morphisme plat s'il est plat en tout point de X. On dit que f est fidèlement plat s'il est de plus surjectif. Si est un faisceau quasi-cohérent sur X.
Lemme de normalisation de NoetherEn algèbre commutative, le lemme de normalisation de Noether, dû à la mathématicienne allemande Emmy Noether, donne une description des algèbres de type fini sur un corps. On fixe une algèbre commutative de type fini A sur un corps (commutatif) K. Lemme de normalisation de Noether : L'algèbre contient et est finie sur un sous-anneau de polynômes . De façon équivalente : Il existe un entier positif ou nul d et un homomorphisme fini injectif de K-algèbres Autrement dit, il existe tels que tout élément a de A s'écrit comme une combinaison avec des polynômes dépendants de a.
Théorème des syzygies de HilbertLe théorème des syzygies est un important résultat mathématiques sur la théorie des anneaux, plus spécifiquement des anneaux de polynômes. Il joue également un rôle historique considérable, en ce qu'il a motivé et orienté le développement de la géométrie algébrique au début du . Il est dû au mathématicien allemand David Hilbert qui l'a démontré en 1890, posant avec le théorème de la base et le théorème des zéros les fondements de l'étude moderne des anneaux de polynômes.
Functor represented by a schemeIn algebraic geometry, a functor represented by a scheme X is a set-valued contravariant functor on the category of schemes such that the value of the functor at each scheme S is (up to natural bijections) the set of all morphisms . The scheme X is then said to represent the functor and that classify geometric objects over S given by F. The best known example is the Hilbert scheme of a scheme X (over some fixed base scheme), which, when it exists, represents a functor sending a scheme S to a flat family of closed subschemes of .