En mathématiques, dans le domaine de la théorie des ensembles, l'axiome de l'infini est l'un des axiomes de la théorie des ensembles de Zermelo-Fraenkel, qui assure l'existence d'un ensemble infini, plus précisément d'un ensemble qui contient une représentation des entiers naturels. Il apparait dans la première axiomatisation de la théorie des ensembles, publiée par Ernst Zermelo en 1908, sous une forme cependant un peu différente de celle exposée ci-dessous.
Il existe plusieurs variantes de l'axiome, suivant par exemple que l'on dispose de la notion d'ordinal ou non. Une façon très intuitive serait de dire qu'un ensemble qui représente celui des entiers naturels existe. En fait on a juste besoin d'affirmer qu'un ensemble ayant pour éléments des représentations des entiers naturels (et éventuellement d'autres) existe.
Pour représenter les entiers naturels, on utilise un 0 et une opération successeur. Suivant les idées de von Neumann, on va représenter 0 par l'ensemble vide (qui a 0 éléments) et le successeur par la fonction x ↦ x ∪ {x}, qui à un ensemble associe celui obtenu en ajoutant l'ensemble de départ comme élément (et qui vérifie intuitivement que si x a n éléments, alors x ∪ {x} en a n + 1). L'existence de l'ensemble vide est assurée par un axiome ad hoc, ou par d'autres axiomes de la théorie. Pour un ensemble x donné, on peut former le singleton {x} par l'axiome de la paire, et la réunion x ∪ {x} par l'axiome de la réunion et à nouveau l'axiome de la paire.
On a évidemment que le successeur de tout ensemble est non vide : pour tout ensemble x, x ∪ {x} ≠ ∅. On montrera ensuite que, sur les entiers au moins, la fonction successeur est bien injective, ce qui assurera, avec la précédente propriété, qu'un ensemble qui contient 0 et le successeur de chacun de ses éléments contient bien une copie des entiers, et donc est infini au sens intuitif. On prendra d'ailleurs cette représentation comme définition des entiers en théorie des ensembles.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
A broad view of the diverse aspects of the field is provided: quantum physics, communication, quantum computation, simulation of physical systems, physics of qubit platforms, hardware technologies. St
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets,
After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament
La théorie des ensembles de Zermelo, est la théorie des ensembles introduite en 1908 par Ernst Zermelo dans un article fondateur de l'axiomatisation de la théorie des ensembles moderne, mais aussi une présentation moderne de celle-ci, où les axiomes sont repris dans le langage de la logique du premier ordre, et où l'axiome de l'infini est modifié pour permettre la construction des entiers naturels de von Neumann. Cette section présente les axiomes originaux de l'article de Zermelo paru en 1908, numérotés comme dans cet article.
En théorie des ensembles, une des branches des mathématiques, l'univers de von Neumann, ou hiérarchie cumulative de von Neumann, est la classe notée V d'ensembles « héréditaires », tels que la relation d'appartenance sur ces ensembles soit bien fondée. Cette classe, qui est formalisée par la théorie des ensembles de Zermelo-Fraenkel (ZFC), est souvent utilisée pour fournir une interprétation ou une motivation des axiomes de ZFC. Ce concept est nommé d'après John von Neumann, bien qu'il ait été publié pour la première fois par Ernst Zermelo en 1930.
L’axiome d’extensionnalité est l’un des axiomes-clés de la plupart des théories des ensembles, en particulier, des théories des ensembles de Zermelo, et de Zermelo-Fraenkel (ZF). Il énonce essentiellement qu'il est suffisant de vérifier que deux ensembles ont les mêmes éléments pour montrer que ces deux ensembles sont égaux, au sens où ils ont les mêmes propriétés, aucune propriété ne permettra de distinguer un ensemble de l'autre.
In this thesis, we study interactions between algebraic and coalgebraic structures in infinity-categories (more precisely, in the quasicategorical model of (infinity, 1)-categories). We define a notion of a Hopf algebra H in an E-2-monoidal infinity-catego ...
We consider the parabolic Anderson model driven by fractional noise: partial derivative/partial derivative t u(t,x) = k Delta u(t,x) + u(t,x)partial derivative/partial derivative t W(t,x) x is an element of Z(d), t >= 0, where k > 0 is a diffusion constant ...
Humans are comparison machines: comparing and choosing an item among a set of alternatives (such as objects or concepts) is arguably one of the most natural ways for us to express our preferences and opinions. In many applications, the analysis of data con ...