Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Espace réflexifEn analyse fonctionnelle, un espace vectoriel normé est dit réflexif si l'injection naturelle dans son bidual topologique est surjective. Les espaces réflexifs possèdent d'intéressantes propriétés géométriques. Soit un espace vectoriel normé, sur ou . On note son dual topologique, c'est-à-dire l'espace (de Banach) des formes linéaires continues de dans le corps de base. On peut alors former le bidual topologique , qui est le dual topologique de . Il existe une application linéaire continue naturelle définie par pour tout dans et dans .
Théorème spectralEn mathématiques, et plus particulièrement en algèbre linéaire et en analyse fonctionnelle, on désigne par théorème spectral plusieurs énoncés affirmant, pour certains endomorphismes, l'existence de décompositions privilégiées, utilisant en particulier l'existence de sous-espaces propres. vignette|Une illustration du théorème spectral dans le cas fini : un ellipsoïde possède (en général) trois axes de symétrie orthogonaux (notés ici x, y et z).
Opérateur compactEn mathématiques, et plus précisément en analyse fonctionnelle, un opérateur compact est une application continue entre deux espaces vectoriels topologiques X et Y envoyant les parties bornées de X sur les parties relativement compactes de Y. Les applications linéaires compactes généralisent les applications linéaires continues de rang fini. La théorie est particulièrement intéressante pour les espaces vectoriels normés ou les espaces de Banach. En particulier, dans un espace de Banach, l'ensemble des opérateurs compacts est fermé pour la topologie forte.
Opérateur adjointEn mathématiques, un opérateur adjoint est un opérateur sur un espace préhilbertien qui est défini, lorsque c'est possible, à partir d'un autre opérateur a et que l'on note a*. On dit aussi que a* est l'adjoint de a. Cet opérateur adjoint permet de faire passer l'opérateur a de la partie gauche du produit scalaire définissant l'espace préhilbertien à la partie droite du produit scalaire. Il s'agit donc d'une généralisation de la notion de matrice adjointe à des espaces de dimension infinie.
C*-algèbreEn mathématiques, une C*-algèbre (complexe) est une algèbre de Banach involutive, c’est-à-dire un espace vectoriel normé complet sur le corps des complexes, muni d'une involution notée , et d'une structure d'algèbre complexe. Elle est également nommée algèbre stellaire. Les C*-algèbres sont des outils importants de la géométrie non commutative. Cette notion a été formalisée en 1943 par Israel Gelfand et Irving Segal. Les algèbres stellaires sont centrales dans l'étude des représentations unitaires de groupes localement compacts.