Rotation operator (quantum mechanics)This article concerns the rotation operator, as it appears in quantum mechanics. With every physical rotation , we postulate a quantum mechanical rotation operator which rotates quantum mechanical states. In terms of the generators of rotation, where is rotation axis, is angular momentum, and is the reduced Planck constant. Translation operator (quantum mechanics) The rotation operator , with the first argument indicating the rotation axis and the second the rotation angle, can operate through the translation operator for infinitesimal rotations as explained below.
Matrice involutiveIn mathematics, an involutory matrix is a square matrix that is its own inverse. That is, multiplication by the matrix A is an involution if and only if A2 = I, where I is the n × n identity matrix. Involutory matrices are all square roots of the identity matrix. This is simply a consequence of the fact that any invertible matrix multiplied by its inverse is the identity. The 2 × 2 real matrix is involutory provided that The Pauli matrices in M(2, C) are involutory: One of the three classes of elementary matrix is involutory, namely the row-interchange elementary matrix.
Produit de KroneckerEn mathématiques, le produit de Kronecker est une opération portant sur les matrices. Il s'agit d'un cas particulier du produit tensoriel. Il est ainsi dénommé en hommage au mathématicien allemand Leopold Kronecker. Soient A une matrice de taille m x n et B une matrice de taille p x q. Leur produit tensoriel est la matrice A ⊗ B de taille mp par nq, définie par blocs successifs de taille p x q, le bloc d'indice i,j valant a B En d'autres termes Ou encore, en détaillant les coefficients, Comme le montre l'exemple ci-dessous, le produit de Kronecker de deux matrices consiste à recopier plusieurs fois la deuxième matrice, en la multipliant par le coefficient correspondant à un terme de la première matrice.
Structure constantsIn mathematics, the structure constants or structure coefficients of an algebra over a field are the coefficients of the basis expansion (into linear combination of basis vectors) of the products of basis vectors. Because the product operation in the algebra is bilinear, by linearity knowing the product of basis vectors allows to compute the product of any elements (just like a matrix allows to compute the action of the linear operator on any vector by providing the action of the operator on basis vectors).
Relativistic angular momentumIn physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics. Angular momentum is an important dynamical quantity derived from position and momentum. It is a measure of an object's rotational motion and resistance to changes in its rotation.
Opérateur de CasimirEn mathématiques, et plus spécifiquement en algèbre, l'opérateur de Casimir est un opérateur particulier. Plus précisément, étant donné une algèbre de Lie munie d'une forme bilinéaire non-dégénérée et invariante, et une représentation de dimension finie, l'opérateur de Casimir est une application linéaire continue particulière sur l'espace vectoriel de la représentation. Cet opérateur commute avec la représentation. Pour l'algèbre de Lie et la représentation étudiées, cet opérateur joue le rôle du laplacien.
Forme de KillingDans la théorie des algèbres de Lie, la forme de Killing est une forme bilinéaire symétrique naturellement associée à toute algèbre de Lie. Elle reflète un certain nombre de propriétés des algèbres de Lie (semi-simplicité, résolubilité...). Soit g une K-algèbre de Lie, où K désigne un corps (commutatif). La représentation adjointe définit pour tout vecteur x de g un endomorphisme K-linéaire ad(x) du K-espace vectoriel g : Si g est de dimension finie, il existe une forme bilinéaire symétrique B définie par : où Tr désigne l'opérateur trace.
Classification des algèbres de CliffordEn mathématiques, en particulier dans la théorie des formes quadratiques non dégénérées sur les espaces vectoriels réels et complexes, les algèbres de Clifford de dimension finie ont été complètement classées. Dans chaque cas, l'algèbre de Clifford est isomorphe à une algèbre de matrices sur R, C ou H (les quaternions), ou à une somme directe de deux de ces algèbres, mais pas de manière canonique. Notation et conventions. Dans cet article, nous utiliserons la convention de signe (+) pour la multiplication de Clifford, c’est-à-dire où Q est la forme quadratique sur l'espace vectoriel V.