Couvre les bases de la topologie, en mettant l'accent sur la cohomologie et les espaces de quotient, en mettant l'accent sur leurs définitions et leurs propriétés à travers des exemples et des exercices.
Couvre la transition du modèle à six vertex à la percolation FK, en se concentrant sur les phénomènes critiques et les transitions de phase dans les systèmes bidimensionnels.
Explore le rôle des propriétés topologiques d'ordre supérieur dans les réseaux complexes en utilisant l'analyse topologique des données pour la détection des ruptures structurelles et des anomalies de prix.
Décrit le cours d'exercice MSE 432 sur les matériaux magnétiques, détaillant la structure du cours, les activités et les critères de notation pour les présentations et les expériences des étudiants.