Explore la maximisation de la diversité dans la sélection des documents, la détermination des cliques de graphes, les théorèmes sur le type négatif et l'optimisation convexe.
Explore les programmes stochastiques en deux étapes, la reformulation des problèmes, la décomposition des plieurs, les points extrêmes et l'analyse de sensibilité.
Introduit la complexité computationnelle, les problèmes de décision, la complexité quantique et les algorithmes probabilistes, y compris les problèmes dures au NP et les problèmes complets au NP.