En mathématiques, en particulier en théorie des nombres, la loi de réciprocité quadratique, établit des liens entre les nombres premiers ; plus précisément, elle décrit la possibilité d'exprimer un nombre premier comme un carré modulo un autre nombre premier. Conjecturée par Euler et reformulée par Legendre, elle a été correctement démontrée pour la première fois par Gauss en 1801. Elle permet de résoudre les deux problèmes de base de la théorie des résidus quadratiques : étant donné un nombre premier p, déterminer, parmi les entiers, lesquels sont des carrés modulo p et lesquels n'en sont pas ; étant donné un entier n, déterminer, parmi les nombres premiers, modulo lesquels n est un carré et modulo lesquels il n'en est pas un. Elle est considérée comme un des théorèmes les plus importants de la théorie des nombres, et a de nombreuses généralisations. L'énoncé complet de Gauss comporte trois assertions : le « théorème fondamental » pour deux nombres premiers impairs et deux « lois complémentaires ». Il faut toutefois observer que si la première loi complémentaire est effectivement une loi de réciprocité, la seconde loi complémentaire ne l'est pas ; en effet, avec la notation de Legendre définie ci-dessous, la première loi complémentaire équivaut bien à c'est-à-dire que –1 se comporte effectivement comme un nombre premier vis-à-vis de la loi de réciprocité quadratique. Il n'en est pas de même du nombre 2, dont la résiduité modulo p est simplement caractérisée par seconde loi complémentaire : la loi de réciprocité est essentiellement un théorème concernant les nombres impairs en général, et c'est de fait à ces nombres qu'elle se généralise par le symbole de Jacobi, puis par celui de Kronecker. Théorème fondamental Étant donnés deux nombres premiers impairs distincts p et q : si p ou q est congru à 1 modulo 4, alors p est un carré modulo q si et seulement si q est un carré modulo p. si p et q sont congrus à 3 modulo 4, alors p est un carré modulo q si et seulement si q n'est pas un carré modulo p.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (20)
MATH-201: Analysis III
Calcul différentiel et intégral. Eléments d'analyse complexe.
MATH-351: Advanced numerical analysis II
The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.
PHYS-316: Statistical physics II
Introduction à la théorie des transitions de phase
Afficher plus
MOOCs associés (9)
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.