Homéomorphisme de graphesEn théorie des graphes, une branche des mathématiques, deux graphes et sont homéomorphes si l'on peut obtenir un même graphe en subdivisant certaines de leurs arêtes. Deux graphes sont homéomorphes si et seulement si leurs représentations graphiques usuelles (avec des segments de droites reliant les sommets entre eux) sont homéomorphes au sens que ce mot a en topologie. Subdivision La subdivision d'une arête conduit à un graphe contenant un nouveau sommet et où l'on a remplacé l'arête par deux nouvelles arêtes, et .
Graphe de HeawoodEn théorie des graphes, le graphe de Heawood est un graphe cubique symétrique possédant 14 sommets et 21 arêtes. Il doit son nom à Percy John Heawood, un mathématicien britannique né en 1861 et mort en 1955. Le graphe de Heawood est une (3,6)-cage, c'est-à-dire un graphe minimal en nombres de sommets ayant une maille de 6 et étant cubique. En fait, il s'agit de l'unique (3,6)-cage et sa taille coïncide avec la borne de Moore, une borne inférieure sur le nombre de sommets que peut avoir une cage.
Coupe (théorie des graphes)En théorie des graphes, une coupe d'un graphe est une partition des sommets en deux sous-ensembles. On appelle aussi coupe l'ensemble des arêtes ayant une extrémité dans chaque sous-ensemble de la partition. Si les arêtes ont un poids, le poids de la coupe est la somme des poids respectifs des arêtes de la coupe. Sinon, c'est le nombre d'arêtes dans la coupe. Cet objet apparaît dans la modélisation de nombreux problèmes concernant les réseaux, où l'on recherche une coupe s-t, c'est-à-dire une coupe séparant deux sommets s et t spécifiés.
Triangulation de DelaunayEn mathématiques et plus particulièrement en géométrie algorithmique, la triangulation de Delaunay d'un ensemble P de points du plan est une triangulation DT(P) telle qu'aucun point de P n'est à l'intérieur du cercle circonscrit d'un des triangles de DT(P). Les triangulations de Delaunay maximisent le plus petit angle de l'ensemble des angles des triangles, évitant ainsi les triangles « allongés ». Cette triangulation a été inventée par le mathématicien russe Boris Delaunay, dans un article publié en 1924.
Graphe polyédriqueEn théorie des graphes, une branche des mathématiques, un graphe polyédrique est un graphe non orienté défini en termes géométriques : il représente les sommets et les arêtes d'un polyèdre convexe. On peut aussi définir un graphe polyédrique en termes purement issus de la théorie des graphes : c'est un graphe planaire 3 sommet-connexe. Le diagramme de Schlegel d'un polyèdre convexe représente ses sommets et ses arêtes par des points et des segments de droite dans le plan euclidien.
Graphe sommet-connexeEn théorie des graphes, un graphe connexe . Un graphe autre qu'un graphe complet est de degré de sommet-connexité k s'il est k-sommet-connexe sans être k+1-sommet-connexe, donc si k est la taille du plus petit sous-ensemble de sommets dont la suppression déconnecte le graphe. Les graphes complets ne sont pas inclus dans cette version de la définition car ils ne peuvent pas être déconnectés en supprimant des sommets. Le graphe complet à n sommets est de degré de connexité n-1.
Théorème des quatre couleursLe théorème des quatre couleurs indique qu'il est possible, en n'utilisant que quatre couleurs différentes, de colorier n'importe quelle carte découpée en régions connexes, de sorte que deux régions adjacentes (ou limitrophes), c'est-à-dire ayant toute une frontière (et non simplement un point) en commun reçoivent toujours deux couleurs distinctes. L'énoncé peut varier et concerner, de manière tout à fait équivalente, la coloration des faces d'un polyèdre ou celle des sommets d'un graphe planaire, en remplaçant la carte par un graphe dont les sommets sont les régions et les arêtes sont les frontières entre régions.
Apollonian networkIn combinatorial mathematics, an Apollonian network is an undirected graph formed by a process of recursively subdividing a triangle into three smaller triangles. Apollonian networks may equivalently be defined as the planar 3-trees, the maximal planar chordal graphs, the uniquely 4-colorable planar graphs, and the graphs of stacked polytopes. They are named after Apollonius of Perga, who studied a related circle-packing construction.
Isthme (théorie des graphes)In graph theory, a bridge, isthmus, cut-edge, or cut arc is an edge of a graph whose deletion increases the graph's number of connected components. Equivalently, an edge is a bridge if and only if it is not contained in any cycle. For a connected graph, a bridge can uniquely determine a cut. A graph is said to be bridgeless or isthmus-free if it contains no bridges. This type of bridge should be distinguished from an unrelated meaning of "bridge" in graph theory, a subgraph separated from the rest of the graph by a specified subset of vertices; see bridge.
Circle packing theoremThe circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles (in general, on any Riemann surface) whose interiors are disjoint. The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent.