Un algorithme récursif est un algorithme qui résout un problème en calculant des solutions d'instances plus petites du même problème. L'approche récursive est un des concepts de base en informatique. Les premiers langages de programmation qui ont autorisé l'emploi de la récursivité sont LISP et Algol 60. Depuis, tous les langages de programmation généraux réalisent une implémentation de la récursivité. Pour répéter des opérations, typiquement, un algorithme récursif s'appelle lui-même.
vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.
En mathématiques, une suite définie par récurrence est une suite définie par son (ou ses) premier(s) terme(s) et par une relation de récurrence, qui définit chaque terme à partir du précédent ou des précédents lorsqu'ils existent. Une relation de récurrence est une équation dans laquelle l'expression de plusieurs termes de la suite apparait, par exemple : ou ou ou si l'on se place dans les suites de mots sur l'alphabet : Si la relation de récurrence a une « bonne » présentation, cela permet de calculer l'expression du terme d'indice le plus élevé en fonction de l'expression des autres.
En mathématiques, un système axiomatique est un ensemble d'axiomes dont certains ou tous les axiomes peuvent être utilisés logiquement pour dériver des théorèmes. Une théorie consiste en un système axiomatique et tous ses théorèmes dérivés. Un système axiomatique complet est un type particulier de système formel. Une théorie formelle signifie généralement un système axiomatique, par exemple formulé dans la théorie des modèles. Une démonstration formelle est une interprétation complète d'une démonstration mathématique dans un système formel.
L'autosimilarité est le caractère d'un objet dans lequel on peut trouver des similarités en l'observant à différentes échelles. Une définition simplifiée, faisant appel à l'intuition, pourrait être : un objet autosimilaire est un objet qui conserve sa forme, quelle que soit l'échelle à laquelle on l'observe. La définition mathématique, formelle et rigoureuse, dépend du contexte. L’expression autosimilaire n’est pas encore reconnue par l’Académie française.
La linguistique est une discipline scientifique s’intéressant à l’étude du langage. Elle n'est pas prescriptive mais descriptive. La prescription correspond à la norme, c'est-à-dire ce qui est jugé correct linguistiquement par les grammairiens. À l'inverse, la linguistique se contente de décrire la langue telle qu'elle est et non telle qu'elle devrait être. On trouve des témoignages de réflexions sur le langage dès l'Antiquité avec des philosophes comme Platon.
En informatique, la mémoïsation (ou mémoïzation) est la mise en cache des valeurs de retour d'une fonction selon ses valeurs d'entrée. Le but de cette technique d'optimisation de code est de diminuer le temps d'exécution d'un programme informatique en mémorisant les valeurs retournées par une fonction. Bien que liée à la notion de cache, la mémoïsation désigne une technique bien distincte de celles mises en œuvre dans les algorithmes de gestion de la mémoire cache. Le terme anglais « memoization » a été introduit par Donald Michie en 1968.
vignette|Exemple de figure fractale (détail de l'ensemble de Mandelbrot)|alt=Exemple de figure fractale (détail de l'ensemble de Mandelbrot). vignette|Ensemble de Julia en . Une figure fractale est un objet mathématique qui présente une structure similaire à toutes les échelles. C'est un objet géométrique « infiniment morcelé » dont des détails sont observables à une échelle arbitrairement choisie. En zoomant sur une partie de la figure, il est possible de retrouver toute la figure ; on dit alors qu’elle est « auto similaire ».
En informatique, la récursion terminale, aussi appelée, récursion finale, est un cas particulier de récursivité assimilée à une itération. Une fonction à récursivité terminale est une fonction où l'appel récursif est la dernière instruction à être évaluée. Cette instruction est alors nécessairement « pure », c'est-à-dire qu'elle consiste en un simple appel à la fonction, et jamais à un calcul ou une composition. Par exemple, dans un langage de programmation fictif : fonction récursionTerminale(n) : // ...
vignette|Le raisonnement par récurrence est comme une suite de dominos. Si la propriété est vraie au rang n0 (i. e. le premier domino de numéro 0 tombe) et si sa véracité au rang n implique celle au rang n + 1 (i. e. la chute du domino numéro n fait tomber le domino numéro n + 1) alors la propriété est vraie pour tout entier (i. e. tous les dominos tombent). En mathématiques, le raisonnement par récurrence (ou par induction, ou induction complète) est une forme de raisonnement visant à démontrer une propriété portant sur tous les entiers naturels.