In mathematics, given a group G, a G-module is an abelian group M on which G acts compatibly with the abelian group structure on M. This widely applicable notion generalizes that of a representation of G. Group (co)homology provides an important set of tools for studying general G-modules. The term G-module is also used for the more general notion of an R-module on which G acts linearly (i.e. as a group of R-module automorphisms). Let be a group. A left -module consists of an abelian group together with a left group action such that g·(a1 + a2) = g·a1 + g·a2 where g·a denotes ρ(g,a). A right G-module is defined similarly. Given a left G-module M, it can be turned into a right G-module by defining a·g = g−1·a. A function f : M → N is called a morphism of G-modules (or a G-linear map, or a G-homomorphism) if f is both a group homomorphism and G-equivariant. The collection of left (respectively right) G-modules and their morphisms form an G-Mod (resp. Mod-G). The category G-Mod (resp. Mod-G) can be identified with the category of left (resp. right) ZG-modules, i.e. with the modules over the group ring Z[G]. A submodule of a G-module M is a subgroup A ⊆ M that is stable under the action of G, i.e. g·a ∈ A for all g ∈ G and a ∈ A. Given a submodule A of M, the quotient module M/A is the quotient group with action g·(m + A) = g·m + A. Given a group G, the abelian group Z is a G-module with the trivial action g·a = a. Let M be the set of binary quadratic forms f(x, y) = ax2 + 2bxy + cy2 with a, b, c integers, and let G = SL(2, Z) (the 2×2 special linear group over Z). Define where and (x, y)g is matrix multiplication. Then M is a G-module studied by Gauss. Indeed, we have If V is a representation of G over a field K, then V is a G-module (it is an abelian group under addition). If G is a topological group and M is an abelian topological group, then a topological G-module is a G-module where the action map G×M → M is continuous (where the product topology is taken on G×M).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.