En mathématiques, en particulier en théorie des représentations, une représentation fidèle ρ d'un groupe G sur un espace vectoriel V est une représentation linéaire dans laquelle différents éléments g de G sont représentés par des applications linéaires distinctes . En langage plus abstrait, cela signifie que le morphisme de groupe est injectif (et éventuellement bijectif). Alors que les représentations de G sur un corps K peuvent de facto être identifiés aux modules sur l'algèbre de groupe du groupe G, une représentation fidèle de G n'est pas nécessairement un module fidèle pour le groupe algèbre. Si chaque -module fidèle est une représentation fidèle de G, la réciproque n'est pas vraie. Considérons par exemple la représentation naturelle du groupe symétrique de dimension n par des matrices de permutation, qui est clairement fidèle. En revanche, l'algèbre de groupe est de dimension , qui est l'ordre du groupe, tandis que l'espace des matrices est de dimension . Dès que n vaut au moins 4, la comparaison des dimensions () montre que l'application n'est pas injective ; autrement dit, le module sur l'algèbre de groupe n'est pas fidèle. Une représentation V d'un groupe fini G sur un corps algébriquement clos K de caractéristique zéro est fidèle (en tant que représentation) si et seulement si toute représentation irréductible de G apparaît comme une sous-représentation de la n-ième puissance symétrique pour n assez grand. Par ailleurs, V est fidèle (toujours en tant que représentation) si et seulement si toute représentation irréductible de G apparaît comme une sous-représentation de la n-ième puissance tensorielle pour n assez grand.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.