Tangente à un cercleEn géométrie plane euclidienne, une tangente au cercle est une droite qui touche un cercle en un point unique, sans passer par l'intérieur du cercle. Les droites tangents aux cercles sont le sujet de nombreux théorèmes, et apparaissent dans de nombreuses constructions à la règle et au compas et des preuves. Une propriété souvent utilisée dans ces théorèmes est que la tangente en un point du cercle est orthogonale au rayon du cercle passant par le point de contact.
Théorème de Descartes (géométrie)En géométrie, le théorème de Descartes, découvert par René Descartes, établit une relation entre quatre cercles tangents entre eux. Il peut être utilisé pour construire les cercles tangents à trois cercles donnés tangents deux à deux. Les problèmes géométriques concernant des cercles tangents sont très anciens. En Grèce antique, trois siècles avant Jésus-Christ, Apollonius de Perga a consacré un livre entier à ce sujet ; malheureusement ce livre, Les Contacts, a disparu.
Cercles d'Apollonius (fractale)En mathématiques, la figure des cercles d'Apollonius est un empilement compact de cercles dans un cercle. Elle est construite en itérant la construction d'Apollonius des deux cercles tangents à trois cercles deux à deux tangents. Sa densité est égale à 1, ce qui signifie que l'aire laissée par les interstices est nulle. C'est aussi une figure de géométrie fractale dont on a calculé la dimension. Elle a été ainsi nommée en l'honneur du mathématicien grec Apollonius de Perge qui a posé le problème de la détermination des cercles tangents à trois cercles.
Cercle de FordEn mathématiques, le cercle de Ford est le cercle de centre et de rayon associé à la fraction irréductible , une fraction sous forme simplifiée, c'est-à-dire composée d'entiers premiers entre eux. Les cercles de Ford sont nommés ainsi en l'honneur du mathématicien américain Lester Ford (père), qui les a décrits dans un article publié dans American Mathematical Monthly en 1938. Le cercle de Ford associé à la fraction irréductible p/q est noté C[p/q] ou C[p, q].
Apollonios de PergaApollonios de Perga ou Apollonius de Perge (en grec ancien / Apollốnios o Pergaíos), né dans la seconde moitié du (probablement autour de ), disparu au début du est un géomètre et astronome grec. Il serait originaire de Pergé (ou Perga, ou encore Pergè actuelle Aksu en Turquie), mais a vécu à Alexandrie. Il est considéré comme l'une des grandes figures des mathématiques hellénistiques et a exercé une influence importante sur les développements de l'analyse au . Apollonius serait né à Perge autour de 240 .
Tangent circlesIn geometry, tangent circles (also known as kissing circles) are circles in a common plane that intersect in a single point. There are two types of tangency: internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the use of materials. Two circles are mutually and externally tangent if distance between their centers is equal to the sum of their radii Steiner chain Pappus chain Problem of Apollonius Apollonius' problem is to construct circles that are tangent to three given circles.
Pappus d'AlexandrieNOTOC Pappus d'Alexandrie — nom latinisé de Pappos d'Alexandrie, en grec — est l'un des plus importants mathématiciens de la Grèce antique. Il est né à Alexandrie en Égypte et a vécu au Très peu de choses sur sa vie sont connues. Les écrits nous suggèrent qu'il fut précepteur. Son principal ouvrage est connu sous le nom de Synagogè (paru vers 340 de notre ère). Il comprend au moins huit volumes qui nous sont parvenus, le reste ayant été perdu.
ConiqueEn géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.