Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les effets aléatoires, la vérification du modèle et les effets imbriqués par rapport aux effets croisés dans la modélisation de régression moderne.
Explore la sélection, l'évaluation et la généralisation des modèles dans l'apprentissage automatique, en mettant l'accent sur l'estimation impartiale des performances et les risques de surapprentissage.
Explore la généralisation, la sélection des modèles et la validation dans l'apprentissage automatique, en soulignant l'importance de l'évaluation impartiale des modèles.
Introduit des concepts d'inférence statistique, en se concentrant sur l'estimation des paramètres, les estimateurs non biaisés et l'estimation moyenne à l'aide de variables aléatoires indépendantes.
Explore la pensée contradictoire, les faiblesses communes et les défenses inefficaces dans les systèmes logiciels, en soulignant l'importance d'atténuer les vulnérabilités courantes.