Explore l'estimation des erreurs a priori dans la méthode des éléments finis, couvrant l'analyse de convergence, l'orthogonalité, les formulations faibles et la précision optimale.
Explore l'approche locale de la méthode des éléments finis, couvrant les matrices élémentaires, les opérations d'assemblage, la matrice de rigidité, le système d'équations et des exemples pratiques.
Explore l'approche locale de la méthode des éléments finis, couvrant les fonctions de forme nodale, les restrictions de solution, les tailles, les conditions aux limites et les opérations d'assemblage.
Explore les méthodes d'éléments finis pour les problèmes d'élasticité et les formulations variationnelles, en mettant l'accent sur les déformations admissibles et les implémentations numériques.