In probability theory and statistics, the generalized inverse Gaussian distribution (GIG) is a three-parameter family of continuous probability distributions with probability density function where Kp is a modified Bessel function of the second kind, a > 0, b > 0 and p a real parameter. It is used extensively in geostatistics, statistical linguistics, finance, etc. This distribution was first proposed by Étienne Halphen. It was rediscovered and popularised by Ole Barndorff-Nielsen, who called it the generalized inverse Gaussian distribution. Its statistical properties are discussed in Bent Jørgensen's lecture notes. By setting and , we can alternatively express the GIG distribution as where is the concentration parameter while is the scaling parameter. Barndorff-Nielsen and Halgreen proved that the GIG distribution is infinitely divisible. The entropy of the generalized inverse Gaussian distribution is given as where is a derivative of the modified Bessel function of the second kind with respect to the order evaluated at The characteristic of a random variable is given as(for a derivation of the characteristic function, see supplementary materials of ) for where denotes the imaginary number. The inverse Gaussian and gamma distributions are special cases of the generalized inverse Gaussian distribution for p = −1/2 and b = 0, respectively. Specifically, an inverse Gaussian distribution of the form is a GIG with , , and . A Gamma distribution of the form is a GIG with , , and . Other special cases include the inverse-gamma distribution, for a = 0. The GIG distribution is conjugate to the normal distribution when serving as the mixing distribution in a normal variance-mean mixture. Let the prior distribution for some hidden variable, say , be GIG: and let there be observed data points, , with normal likelihood function, conditioned on where is the normal distribution, with mean and variance . Then the posterior for , given the data is also GIG: where . The Sichel distribution results when the GIG is used as the mixing distribution for the Poisson parameter .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.