Contrainte (mécanique)vignette|Lignes de tension dans un rapporteur en plastique vu sous une lumière polarisée grâce à la photoélasticité. En mécanique des milieux continus, et en résistance des matériaux en règle générale, la contrainte mécanique (autrefois appelée tension ou « fatigue élastique ») décrit les forces que les particules élémentaires d'un milieu exercent les unes sur les autres par unité de surface. Ce bilan des forces locales est conceptualisé par un tenseur d'ordre deux : le tenseur des contraintes.
Module de YoungLe module de Young, module d’élasticité (longitudinale) ou module de traction est la constante qui relie la contrainte de traction (ou de compression) et le début de la déformation d'un matériau élastique isotrope. Dans les ouvrages scientifiques utilisés dans les écoles d'ingénieurs, il a été longtemps appelé module d'Young. Le physicien britannique Thomas Young (1773-1829) avait remarqué que le rapport entre la contrainte de traction appliquée à un matériau et la déformation qui en résulte (un allongement relatif) est constant, tant que cette déformation reste petite et que la limite d'élasticité du matériau n'est pas atteinte.
Loi de HookeEn physique, la loi de Hooke modélise le comportement des solides élastiques soumis à des contraintes. Elle stipule que la déformation élastique est une fonction linéaire des contraintes. Sous sa forme la plus simple, elle relie l'allongement (d'un ressort, par exemple) à la force appliquée. Cette loi de comportement a été énoncée par le physicien anglais Robert Hooke en 1676. La loi de Hooke est en fait le terme de premier ordre d'une série de Taylor. C'est donc une approximation qui peut devenir inexacte quand la déformation est trop grande.
Coefficient de PoissonMis en évidence (analytiquement) par Siméon Denis Poisson, le coefficient de Poisson (aussi appelé coefficient principal de Poisson) permet de caractériser la contraction de la matière perpendiculairement à la direction de l'effort appliqué. thumb|upright=1.4|Illustration du coefficient de Poisson. Dans le cas le plus général le coefficient de Poisson dépend de la direction de l'allongement, mais : dans le cas important des matériaux isotropes il en est indépendant ; dans le cas d'un matériau on définit trois coefficients de Poisson (dont deux liés par une relation) ; dans le cas d'un matériau orthotrope on définit deux coefficients de Poisson (liés par une relation) pour chacune des trois directions principales.
Linear elasticityLinear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: infinitesimal strains or "small" deformations (or strains) and linear relationships between the components of stress and strain. In addition linear elasticity is valid only for stress states that do not produce yielding.
Deformation (engineering)In engineering, deformation refers to the change in size or shape of an object. Displacements are the absolute change in position of a point on the object. Deflection is the relative change in external displacements on an object. Strain is the relative internal change in shape of an infinitesimally small cube of material and can be expressed as a non-dimensional change in length or angle of distortion of the cube. Strains are related to the forces acting on the cube, which are known as stress, by a stress-strain curve.
Mécanique des solides déformablesLa est la branche de la mécanique des milieux continus qui étudie le comportement mécanique des matériaux solides, en particulier leurs mouvements et leurs déformations sous l'action de forces, de changements de température, de changements de phase ou d'autres actions externes ou internes. Une application typique de la mécanique des solides déformables consiste à déterminer à partir d'un certaine géométrie solide d'origine et des chargements qui lui sont appliqués, si le corps répond à certaines exigences de résistance et de rigidité.
Stress–strain curveIn engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing). These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength. Generally speaking, curves representing the relationship between stress and strain in any form of deformation can be regarded as stress–strain curves.
Déformation plastiqueLa théorie de la plasticité traite des déformations irréversibles indépendantes du temps, elle est basée sur des mécanismes physiques intervenant dans les métaux et alliages mettant en jeu des mouvements de dislocations (un réarrangement de la position relative des atomes, ou plus généralement des éléments constitutifs du matériau) dans un réseau cristallin sans influence de phénomènes visqueux ni présence de décohésion endommageant la matière. Une des caractéristiques de la plasticité est qu’elle n’apparaît qu’une fois un seuil de charge atteint.
Loi de comportementLes lois de comportement de la matière, étudiées en science des matériaux et notamment en mécanique des milieux continus, visent à modéliser le comportement des fluides ou solides par des lois empiriques lors de leur déformation. Les modèles ci-dessous sont volontairement simplifiés, afin de permettre d'appréhender les notions élémentaires.