Concepts associés (12)
Processus empirique
En probabilités, le processus empirique est un processus stochastique qui s'exprime en fonction de la proportion d'objets appartenant à un certain ensemble. Ce processus fait intervenir les déviations d'une statistique autour de sa moyenne et sera donc utile dans l'étude de la plupart d'entre elles. Si sont des variables aléatoires réelles indépendantes et identiquement distribuées (i.i.d.) ayant pour fonction de répartition alors on définit le processus empirique réel par où est la fonction de répartition empirique associée à l'échantillon .
Fréquence (statistiques)
vignette|Fréquence des traits de kanji En statistique, on appelle fréquence absolue l'effectif des observations d'une classe et fréquence relative ou simplement fréquence, le quotient de cet effectif par celui de la population. L'expression fréquence = valeur n'est jamais ambigüe. Si valeur est un nombre entier positif, il s'agit de la fréquence absolue, c'est-à-dire l'effectif de la classe. Si valeur est un nombre compris entre 0 et 1 ou un pourcentage, il s'agit de la fréquence relative.
Bootstrap (statistiques)
En statistiques, les techniques de bootstrap sont des méthodes d'inférence statistique basées sur la réplication multiple des données à partir du jeu de données étudié, selon les techniques de rééchantillonnage. Elles datent de la fin des années 1970, époque où la possibilité de calculs informatiques intensifs devient abordable. On calculait depuis près d'un siècle des estimations : mesures de dispersion (variance, écart-type), intervalles de confiance, tables de décision pour des tests d'hypothèse, etc.
Pont brownien
En mathématique, plus précisément théorie des probabilités, un pont brownien standard est un processus stochastique à temps continu de même loi qu'un processus de Wiener mais conditionné à s'annuler en 0 et en 1. À ne pas confondre avec l'excursion brownienne. Le pont brownien standard est ainsi également appelé « mouvement brownien attaché » ("tied down Brownian motion" en anglais), « mouvement brownien attaché en 0 et 1 » ("Brownian motion tied down at 0 and 1" en anglais) ou « mouvement brownien épinglé » ("pinned Brownian motion" en anglais).
Quantile
vignette|Densité de probabilité d'une loi normale de moyenne μ et d'écart-type σ. On montre ici les trois quartiles Q1, Q2, Q3. L'aire sous la courbe rouge est la même dans les intervalles (−∞,Q1), (Q1,Q2), (Q2,Q3), et (Q3,+∞). La probabilité d'être dans chacun de ces intervalles est de 25%. En statistiques et en théorie des probabilités, les quantiles sont les valeurs qui divisent un jeu de données en intervalles de même probabilité égale. Il y a donc un quantile de moins que le nombre de groupes créés.
Loi des grands nombres
vignette|Visualisation de la loi des grands nombres En mathématiques, la loi des grands nombres permet d’interpréter la probabilité comme une fréquence de réalisation, justifiant ainsi le principe des sondages, et présente l’espérance comme une moyenne. Plus formellement, elle signifie que la moyenne empirique, calculée sur les valeurs d’un échantillon, converge vers l’espérance lorsque la taille de l’échantillon tend vers l’infini. Plusieurs théorèmes expriment cette loi, pour différents types de convergence en théorie des probabilités.
Variables indépendantes et identiquement distribuées
vignette|upright=1.5|alt=nuage de points|Ce nuage de points représente 500 valeurs aléatoires iid simulées informatiquement. L'ordonnée d'un point est la valeur simulée suivante, dans la liste des 500 valeurs, de la valeur simulée pour l'abscisse du point. En théorie des probabilités et en statistique, des variables indépendantes et identiquement distribuées sont des variables aléatoires qui suivent toutes la même loi de probabilité et sont indépendantes. On dit que ce sont des variables aléatoires iid ou plus simplement des variables iid.
Théorème central limite
thumb|upright=2|La loi normale, souvent appelée la « courbe en cloche ». Le théorème central limite (aussi appelé théorème limite central, théorème de la limite centrale ou théorème de la limite centrée) établit la convergence en loi de la somme d'une suite de variables aléatoires vers la loi normale. Intuitivement, ce résultat affirme qu'une somme de variables aléatoires indépendantes et identiquement distribuées tend (le plus souvent) vers une variable aléatoire gaussienne.
Convergence de variables aléatoires
Dans la théorie des probabilités, il existe différentes notions de convergence de variables aléatoires. La convergence (dans un des sens décrits ci-dessous) de suites de variables aléatoires est un concept important de la théorie des probabilités utilisé notamment en statistique et dans l'étude des processus stochastiques. Par exemple, la moyenne de n variables aléatoires indépendantes et identiquement distribuées converge presque sûrement vers l'espérance commune de ces variables aléatoires (si celle-ci existe).
Inférence statistique
vignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.