Concepts associés (14)
Division algorithm
A division algorithm is an algorithm which, given two integers N and D (respectively the numerator and the denominator), computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software. Division algorithms fall into two main categories: slow division and fast division. Slow division algorithms produce one digit of the final quotient per iteration. Examples of slow division include restoring, non-performing restoring, non-restoring, and SRT division.
Fraction continue généralisée
En mathématiques, une fraction continue généralisée est une expression de la forme : comportant un nombre fini ou infini d'étages. C'est donc une généralisation des fractions continues simples puisque dans ces dernières, tous les a sont égaux à 1. Une fraction continue généralisée est une généralisation des fractions continues où les numérateurs et dénominateurs partiels peuvent être des complexes quelconques : où an (n > 0) sont les numérateurs partiels et les bn les dénominateurs partiels.
Racine carrée de cinq
En mathématiques, la racine carrée de cinq, notée ou 5, est un nombre réel remarquable ; c'est l'unique réel positif dont le carré est égal à 5. Il vaut approximativement 2,236. C'est un irrationnel quadratique et un entier quadratique (entier algébrique de degré 2). le nombre 5 ayant deux racines carrées réelles, devrait se prononcer « racine carrée positive de cinq », mais il se prononce habituellement « racine carrée de cinq », voire « racine de cinq » pour simplifier. Se prononçait aussi « radical de cinq ».
Racine carrée
En mathématiques élémentaires, la racine carrée d'un nombre réel positif x est l'unique réel positif qui, lorsqu'il est multiplié par lui-même, donne x, c'est-à-dire le nombre positif dont le carré vaut x. On le note ou x. Dans cette expression, x est appelé le radicande et le signe est appelé le radical. La fonction qui, à tout réel positif, associe sa racine carrée s'appelle la fonction racine carrée. En algèbre et analyse, dans un anneau ou un corps A, on appelle racine carrée de a, tout élément de A dont le carré vaut a.
Règle à calcul
La règle à calcul (ou règle à calculer) est un instrument mécanique qui permet le calcul analogique et sert à effectuer facilement des opérations arithmétiques de multiplication et de division par simple déplacement longitudinal d’un coulisseau gradué. Elle utilise pour cela la propriété des fonctions logarithmes qui transforment un produit en somme et une division en différence. Elle permet également la réalisation d'opérations plus complexes, telles que la détermination de racines carrées ou cubiques et tous les calculs trigonométriques courants.
Méthode de Newton
vignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.
Racine d'un nombre
En mathématiques, une racine n-ième d'un nombre a est un nombre b tel que b = a, où n est un entier naturel non nul. Selon que l'on travaille dans l'ensemble des réels positifs, l'ensemble des réels ou l'ensemble des complexes, le nombre de racines n-ièmes d'un nombre peut être 0, 1, 2 ou n. Pour un nombre réel a positif, il existe un unique réel b positif tel que b = a. Ce réel est appelé la racine n-ième de a (ou racine n-ième principale de a) et se note avec le symbole radical () ou a.
Racine cubique
vignette|Courbe représentative de la fonction racine cubique sur R. En mathématiques, la racine cubique d'un nombre réel est l'unique nombre réel dont le cube (c'est-à-dire la puissance ) vaut ; en d'autres termes, . La racine cubique de est notée . On peut également parler des racines cubiques d'un nombre complexe. De façon générale, on appelle racine cubique d'un nombre (réel ou complexe) tout nombre solution de l'équation : Si est réel, cette équation a dans R une unique solution, qu'on appelle la racine cubique du réel : .
Racine carrée de deux
La racine carrée de deux, notée (ou parfois 2), est définie comme le seul nombre réel positif qui, lorsqu’il est multiplié par lui-même, donne le nombre 2, autrement dit × = 2. C’est un nombre irrationnel, dont une valeur approchée à 10 près est : ≈ 1,414 213 562. vignette|L’hypoténuse d’un triangle rectangle isocèle de côté 1 vaut . Le calcul d’une valeur approchée de a été un problème mathématique pendant des siècles. Ces recherches ont permis de perfectionner les algorithmes de calculs d’extraction de racines carrées.
Moyenne géométrique
En mathématiques, la moyenne géométrique est un type de moyenne. La moyenne géométrique de deux nombres positifs a et b est le nombre positif c tel que : Cette égalité étant une proportion, ceci justifie l'autre appellation « moyenne proportionnelle » de la moyenne géométrique. vignette|La moyenne géométrique des côtés d'un rectangle est donnée par un carré de même aire. Elle est construite par un cercle tangent aux deux cercles définis par les côtés du rectangle et les séparant.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.