Concepts associés (7)
Loi normale multidimensionnelle
En théorie des probabilités, on appelle loi normale multidimensionnelle, ou normale multivariée ou loi multinormale ou loi de Gauss à plusieurs variables, la loi de probabilité qui est la généralisation multidimensionnelle de la loi normale. gauche|vignette|Différentes densités de lois normales en un dimension. gauche|vignette|Densité d'une loi gaussienne en 2D. Une loi normale classique est une loi dite « en cloche » en une dimension.
Loi de probabilité à plusieurs variables
vignette|Représentation d'une loi normale multivariée. Les courbes rouge et bleue représentent les lois marginales. Les points noirs sont des réalisations de cette distribution à plusieurs variables. Dans certains problèmes interviennent simultanément plusieurs variables aléatoires. Mis à part les cas particuliers de variables indépendantes (notion définie ci-dessous) et de variables liées fonctionnellement, cela introduit la notion de loi de probabilité à plusieurs variables autrement appelée loi jointe.
Théorie moderne du portefeuille
La théorie moderne du portefeuille est une théorie financière développée en 1952 par Harry Markowitz. Elle expose comment des investisseurs rationnels utilisent la diversification afin d'optimiser leur portefeuille, et quel devrait être le prix d'un actif étant donné son risque par rapport au risque moyen du marché. Cette théorie fait appel aux concepts de frontière efficiente, coefficient bêta, droite de marché des capitaux et droite de marché des titres. Sa formalisation la plus accomplie est le modèle d'évaluation des actifs financiers ou MEDAF.
Ellipsoïde
En mathématiques, et plus précisément en géométrie euclidienne, un ellipsoïde est une surface du second degré de l'espace euclidien à trois dimensions. Il fait donc partie des quadriques, avec pour caractéristique principale de ne pas posséder de point à l'infini. L'ellipsoïde admet un centre et au moins trois plans de symétrie. L'intersection d'un ellipsoïde avec un plan est une ellipse, un point ou l'ensemble vide.
Covariance matrix
In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself). Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions.
Corrélation (statistiques)
En probabilités et en statistique, la corrélation entre plusieurs variables aléatoires ou statistiques est une notion de liaison qui contredit leur indépendance. Cette corrélation est très souvent réduite à la corrélation linéaire entre variables quantitatives, c’est-à-dire l’ajustement d’une variable par rapport à l’autre par une relation affine obtenue par régression linéaire. Pour cela, on calcule un coefficient de corrélation linéaire, quotient de leur covariance par le produit de leurs écarts types.
Paramètre de position
vignette|Animation de la fonction de densité d'une loi normale, en faisant varier la moyenne entre -5 et 5. La moyenne est un paramètre de position et ne fait que déplacer la courbe en forme de cloche. En théorie des probabilités et statistiques, un paramètre de position (ou de localisation) est, comme son nom l'indique, un paramètre qui régit la position d'une densité de probabilité. Si ce paramètre (scalaire ou vectoriel) est noté λ, la densité se présente formellement comme : où f représente en quelque sorte la densité témoin.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.