Gravitoélectromagnétismevignette|redresse=1.8|Diagramme d'effets mesurés par la sonde Gravity Probe B et décrits par le gravitoélectromagnétisme. Le gravitoélectromagnétisme, aussi nommé GEM, est une analogie entre les équations de l'électromagnétisme et celles de la gravitation, plus précisément entre les équations de Maxwell et une approximation, valide selon certaines conditions, des équations d'Einstein pour la relativité générale.
Singularité annulairevignette|Horizons des événements et ergosphères d'un trou noir en rotation ; la singularité annulaire est située au niveau du nœud équatorial de l'ergosphère interne à R=a. En relativité générale, une singularité annulaire (de l'anglais ring singularity ou ringularity) est la singularité gravitationnelle d'un trou noir en rotation qui prend la forme d'un anneau. S'intégrant dans la métrique de Kerr, ce concept et sa géométrie continuent d'être l'objet de nombreux travaux scientifiques.
Horizon des événementsL'horizon des événements est, en relativité restreinte et en relativité générale, constitué par la limite éventuelle de la région qui peut être influencée dans le futur par un observateur situé en un endroit donné à une époque donnée. Dans le cas d'un trou noir, en particulier, on peut définir son horizon des événements comme une surface qui l'entoure, d'où aucun objet, ni même un rayon de lumière ne peut jamais échapper au champ gravitationnel du trou noir.
Précession géodétiquevignette|Précession géodétique d'un pulsar binaire. L'animation pose l'un des deux pulsars comme système de référence, considéré comme immobile. On voit les effets relativistes sur la rotation de l'autre, dans ce cas-ci PSR J1906+0746. La précession géodétique est le nom donné au phénomène de précession que subit le moment cinétique d'un objet, ou le spin d'une particule élémentaire quand elle possède une trajectoire accélérée, soumise ou non aux forces gravitationnelles.
ErgosphèreEn astrophysique, l'ergorégion est une région comprise entre l'horizon et l'ergosphère d'un trou noir en rotation (trou noir de Kerr ou trou noir de Kerr-Newman). Pour de tels objets, la rotation du trou noir a tendance à entraîner l'espace et la matière dans son mouvement. Ce phénomène est appelé effet Lense-Thirring. Il prend une amplitude telle au voisinage d'un trou noir qu'il devient impossible à un observateur de rester immobile par rapport à des étoiles lointaines (considérées comme fixes).
Kerr metricThe Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find. The Kerr metric is a generalization to a rotating body of the Schwarzschild metric, discovered by Karl Schwarzschild in 1915, which described the geometry of spacetime around an uncharged, spherically symmetric, and non-rotating body.
Trou noir de KerrEn astrophysique, un trou noir de Kerr, ainsi désigné en l'honneur du mathématicien néozélandais Roy Kerr, est, par définition, un trou noir : de masse strictement positive : ; dont le moment cinétique n'est pas nul : , c'est-à-dire qui est en rotation axiale ; dont la charge électrique est nulle . D'après la conjecture de calvitie, proposée par John Wheeler, il est un des quatre types théoriques de trous noirs.
Principe d'équivalenceOn énumère en général trois principes d'équivalence : le principe « faible », celui d'Einstein et le principe « fort ». Le premier est le constat de l'égalité entre la masse inertielle et la masse gravitationnelle. Albert Einstein présente le second comme une « interprétation » du premier en termes d'équivalence locale entre la gravitation et l'accélération (elles sont localement indistinguables) ; c'est un élément clé de la construction de la relativité générale.
Principe de MachEn physique théorique, le principe de Mach est une conjecture selon laquelle l'inertie des objets matériels serait induite par « l'ensemble des autres masses présentes dans l'univers », par une interaction non spécifiée. Ce principe a été forgé par le physicien Ernst Mach par extension du principe de relativité aux questions d'inertie : pour Mach, parler d'accélération ou de rotation par rapport à un espace absolu n'a aucun sens, et il vaut mieux parler d'accélération par rapport à des masses lointaines.
Principe de relativitéLe principe de relativité affirme que les lois physiques s'expriment de manière identique dans tous les référentiels inertiels : les lois sont « invariantes par changement de référentiel inertiel ». Cela implique que pour deux expériences préparées de manière identique dans deux référentiels inertiels, les mesures faites sur l'une et l'autre dans leur référentiel respectif sont identiques : si je laisse tomber une balle, je constate la même trajectoire, que je réalise l'expérience sur le quai d'une gare ou dans un train en mouvement rectiligne uniforme.