Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des bases de régression linéaire du point de vue de la minimisation empirique des risques, couvrant la perte carrée, le prétraitement des données et le calcul du gradient.
Explore les algorithmes de consensus dans les systèmes de contrôle en réseau, couvrant des sujets tels que les modèles Metropolis-Hasting et le calcul distribué de régression des moins-quaires.
Couvre des exemples de modèles de décision pour lapprentissage supervisé, y compris la régression, la classification, les paires de classement et le décodage de séquence pour les modèles OCR.
Couvre les solutions les moins carrées pour les systèmes linéaires utilisant des opérations matricielles et des systèmes normaux, illustrés par des exemples.
Explore les applications de l'interpolation dans l'analyse des tissus biologiques et des données de recensement de la population en utilisant la méthode des moindres carrés.
Couvre les bases de régression linéaire, en se concentrant sur la minimisation des erreurs en utilisant le principe des moindres carrés et comprend une table ANOVA et un exemple pratique dans R.