Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les régressions paramétriques, en mettant l'accent sur la simplicité et la complexité des compromis de régression linéaire entre les modèles paramétriques et non paramétriques.
Couvre les statistiques descriptives, les tests d'hypothèses et l'analyse de corrélation avec diverses distributions de probabilités et des statistiques robustes.
Plonge dans les relations entre les troubles de l’humeur, la performance cognitive et la plasticité du cerveau en milieu urbain, en utilisant les données de cohortes médicales.
S'insère dans l'analyse de régression, en mettant l'accent sur le rôle des prédicteurs linéaires dans le rapprochement des résultats et en discutant des modèles linéaires généralisés et des techniques d'inférence causale.
Explore les modèles paramétriques, les techniques d'estimation, les modèles de régression et les classificateurs basés sur les scores dans l'analyse des données.
Explore des méthodes d'optimisation telles que la descente de gradient et les sous-gradients pour la formation de modèles d'apprentissage automatique, y compris des techniques avancées telles que l'optimisation d'Adam.
Explore les régressions OLS pour les prix des maisons, couvrant les valeurs aberrantes, les observations influentes, les spécifications du modèle et les stratégies de sélection.